PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2016.03.025

BOUNDARY CONDITIONS FOR MATHEMATICAL SIMULATION OF THE ELECTROMAGNETIC FIELD INSIDE AND OUTSIDE OF THE DISCHARGE CHAMBER OF HIGH-VOLTAGE ELECTRO-HYDRAULIC INSTALLATION

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue № 3, 2016 (May/June)
Pages 25 – 32

 

Authors
V.M. Kosenkov, V.M. Bychkov
Institute of pulse processes and technologies of National Academy of Sciences of Ukraine,
pr. Zhovtnevyi, 43-a, Mykolayiv, 54018, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

 

Abstract

Features of the defining of boundary conditions for mathematical simulation of electromagnetic field (EMF) of high-voltage electro-hydraulic installation in final volume of computational domain outside of the discharge chamber are determined. Their use in the calculation of EMF inside and outside of discharge chamber allows to obtain the field distribution, which is equivalent to the distribution of EMF when using the exact boundary conditions at infinity - the error is not more than 5%. The mathematical model and algorithm for solving the obtained system of equations based on numerical methods are developed. Verification of the model and the algorithm is executed on the tasks that admit exact solutions. References 20, figures 4.

 

Key words: electrical discharge, capacitor, discharge channel in the water, the mathematical model, electromagnetic field, electro-hydraulic installation, boundary conditions.

 

Received:    11.11.2014
Accepted:     25.02.2016
Published:   25.04.2016

 

References

1. Binns K., Laurenson P. Analysis and computation of electrical and magnetic field problems.  Moskva: Energiia, 1970.  376 p. (Rus)
2. Vovchenko A.I., Tertilov R.V. Synthesis of capacitive non-linear- parametrical energy sources for discharge-pulse technologies. Zbirnyk naukovykh pratz Natsionalnoho Universytetu Korablebuduvannia.  2010.  No 4.  P. 118–124. (Rus)
3. Darevsky A.I., Kukharkin Ye.S. Theoretical foundations of electrical engineering. Part 2.  Moskva:Vysshaia shkola, 1965.  284 p. (Rus)
4. Demirchan K.S., Chechurin V.L. Machine calculations of electromagnetic fields.  Мoskva: Vysshaia shkola, 1986.  240 p. (Rus)
5. Kosenkov V.M. Influence of the length of the channel of a high-voltage discharge in water on the efficiency of plastic deformation of a cylindrical shell. Zhurnal Tekhnicheskoi Fiziki.  2011.  Vol. 81.  No 10.  P. 133–139.
6. Kutarev A.M., Zhurkin M.I. Comparison of the calculated magnetic field by the finite difference method with use of the vector and scalar potential of the magnetic field. Vestnik OGU.  2005.  No 4.  Р. 127–130. (Rus)
7. Lapik R.M., Martyshkin P.V. Calculation and measurements of the prototype magnet of the conversion system of VEPP-5 injection complex. Novosibirsk: Institut Yadernoi Fiziki, 1999.  33 р. (Rus)
8. Samarsky A.A., Gulin A.V. Numerical methods.  Moskva: Nauka, 1989.  432 p. (Rus)
9. Stepanov R.A., Chupin A.V., Frik P.G. Screw dynamo in a torus. Vychislitelnaia Mekhanika Sploshnykh Sred.  2008.  Vol. 1.  P. 109–117. (Rus)
10. Shcherba A.A., Suprunovska N.I. Synthesis of electrical circuits with capacitive energy storages in semiconductor powerful shapers of discharge pulses. Tekhnichna Elektrodynamika.  2014.  No 1.  P. 3–11. (Rus)
11. Shcherba A.A., Suprunovska N.I. Regularities of increasing rate of current rise under loading at limiting its maximal values  Tekhnichna Elektrodynamika.  2012.  No 5.  P. 3–10. (Rus)
12. Shcherba A.A., Suprunovska N.I., Ivashchenko D.S. Modeling of nonlinear resistance of electro-spark load for synthesis of discharge circuit of capacitor by time parameters. Tekhnichna Elektrodynamika.  2014.  No 3.  P. 12–18. (Rus)
13. Shcherba A.A., Suprunovska N.I., Synytsyn V.K., Ivashchenko D.S. Aperiodic and Oscillatory Processes of Capacitor Discharge at Forced Limitation of Duration. Tekhnichna Elektrodynamika.  2012.  No 3.  P. 9–10. (Rus)
14. Dimbylow P.J. Corrent densities in a 2 mm resolution anatomically realistic model of the body induced by low frequency electric fields. Phys. Med. Biol. 2000.  No 45.  P. 1013–1022.
15. Gillard A., Golovashchenko S., Mamutov A. Effect of quasi-static prestrain on the formability of dual phase steels in electrohydraulic forming. Journal of Manufacturing Processes.  2013.  Vol. 15. P. 201–218.
16. Golovashchenko S.F., Gillard A., Mamutov A., Bonnen J., Tang Z. Electrohydraulic Trimming of Advanced and Ultra High Strength Steels. Journal of Materials Processing Technology.  2014.  Vol. 214.  P. 1027–1043.
17. Kosenkov V.M., Bychkov V.M. Mathematical modeling of transient processes in the discharge circuit and chamber of an electrohydraulic installation. Surface engineering and applied electrochemistry.  2015.  Vol. 51.  No 2.  Р. 167–173.
18. Rezinkina, M., Bydianskaya, E., Shcherba, A. Alteration of brain electrical activity by electromagnetic field. Environmentalist.  2007.  Vol. 27.  Nо 4.  P. 417–422.
19. Shcherba A.A., Kosenkov V.M., Bychkov V.M. Mathematical closed model of electric and magnetic fields in the discharge chamber of an Electrohydraulic installation. Surface engineering and applied electrochemistry.  2015.  Vol. 51.  No 6.  Р. 581–588.
20. Taflove A., Hagness S. Computational electrodynamics: the finite difference time domain method.  Boston; London: Artech House,  2000.  852 p.

 

PDF