PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2017.02.005

PHYSICAL PREREQUISITES OF CONSTRUCTION OF MATHEMATICAL MODELS OF ELECTRIC RESISTANCE OF PLASMA-EROSIVE LOADS

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 2, 2017 (March/April)
Pages 5 – 12

 

Authors
N.A. Shydlovska, S.M. Zakharchenko, O.P. Cherkaskyi
Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript , Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript , Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

 

Abstract

In the present article are described the features of the influence of the physical processes taking place during the flow of pulsed electric currents in multichannel plasma-erosive loads on the current form and the form of parametric and non-linear dependency of the equivalent resistance of such loads. A comparative analysis of the relevance and range of applicability of parametric and non-linear models of equivalent electric resistance plasma-erosive loads is given. It is shown that consideration of multimodal pulse currents is only possible with the use of parametric and stochastic-parametric models of plasma-erosive load resistance. It is shown that the use of parametric models of such loads is more appropriate at higher values of time constant of the transient or the period of free oscillation of circuits with them and their minimal modifications. References 30, figures 5.

 

Key words: plasma-erosive load, discharge current, parametric model, non-linear model, the adequacy.

 

Received:    12.01.2017
Accepted:     01.02.2017
Published:   23.03.2017

 

References

1. Bezkrovnyiy Yu.A., Levchenko V.F, Levchenko Yu.V. Electric Pulse Purification of Industrial Sewage. Voda i Vodoochysni Tekhnolohii. 2004.  No 3.  Pp. 71–74. (Rus)
2. Vorobyev G.А., Muhachev V.A. Breakdown of thin Dielectric Films.  Мoskva: Sovetskoe Radio, 1977.  72 p. (Rus)
3. Goronovskiy I.S. Radiotechnical Circuits and Signals.  Мoskva: Radio i Sviaz, 1986.  512 p. (Rus)
4. Greshilov A.A., Stakun V.A., Stakun A.A. Mathematical methods of making predictions.  Мoskva: Radio i Sviaz, 1997.  112 p. (Rus)
5. Davydov V.A., Davydov A.V. Noise Removal from Geophysical Data With the Use of the Hilbert-Huang Transform. [Elektronnii resurs]. Aktualnye innovatsionnye issledovaniia: nauka i praktika.  2010.  No 1.  P. 1. Rezhym dostupu do zhurn.: http://www.actualresearch.ru/nn/2010_1/Article/geo/davydov.htm(Rus)
6. Zakharchenko S.N. Modeling of Dependence of Electrical Resistance of Granulated Conductive Mediums from a Pulse Current Proceeding in Them. Tekhnichna Elektrodynamika.  2012.  No 5.  Pp. 17–27. (Rus)
7. Zakharchenko S.N., Shidlovskaia N.А. Modeling of Resistance of Granulated Conductive Media by Parametrical Dependences. Elektronnoe Modelirovanie.  2012.  34. No 5.  Pp. 91–102. (Rus)
8. Zakharchenko S.N. Features of Electromagnetic Processes in Spark Erosion Coagulation Installations for Water Treatment Systems, Heating Systems and Units. Novyny Enerhetyky. 2012.  No 6.  Pp. 41–48. (Rus)
9. Zakharchenko S.N. Improving the Efficiency of Obtaining of the Ultradispersive Metal Particles by Volume Electric-erosive Dispersion their Granules in a Liquid. Tekhnichna Elektrodynamika.  2013.  No 1.  Pp. 16–23. (Rus)
10. Zakharchenko S.M. Statistical Rresearch of Equivalent Electric Resistance of the Heterogeneous Current–carrying Medium at its Electric-erosive Processing on an Example of Granules of Aluminum in Water. Naukovyi Vіsnyk Natsіonalnoho hіrnychoho unіversytetu. 2013.  No 1 (133).  Pp. 62–67. (Ukr)
11. Zakharchenko S.N. Physical Model of the Granulated Conductive Medium. Tekhnichna Elektrodynamika.  2012.  No 6.  Pp. 19–26. (Rus)
12. Lopatko K.G., Melnichuk M.D. Physics, Synthesis and Biological Functionality of Nanosize objects. Kyiv: Vydavnychyi tsentr Natsionalnoho Universytetu Bioresursiv i Pryrodokorystuvannia Ukrainy.  2013.  297 p. (Ukr)
13. Namitokov K.K. Electrical-erosive Phenomenon.  Мoskva: Energiia, 1978.  456 p. (Rus)
14. Podoltsev A.D., Suprunovska N.I. Modeling and the Analysis of Electric Discharge Processes in Nonlinear RLC-circuits. Tekhnichna Elektrodynamika. Tematychnyi vypusk Problemy suchasnoi elektrotekhniky.  2006.  Vol. 4.  Pp. 3–8. (Rus)
15. Riser Yu.P. Physics of the Discharge in Gas: The manual.  Мoskva: Nauka, 1987.  592 p. (Rus)
16. Tropchenko A.Yu., Tropchenko A.A. Digital Signal Processing. Preprocessing Methods.  Sankt Peterburg: SPbGU ITMO, 2009.  100 p. (Rus)
17. Ushakov V.Ja. Pulse Electric Breakdown of Liquids.  Tomsk: Izdatelstvo Tomskogo universiteta, 1975.  256 p. (Rus)
18. Stromberg A.G., Semchenko D.P. Physical Chemistry: The Manual.  Moskva: Vysshaia Shkola, 2009.  528 p. (Rus)
19. Huang T.S., Eklund Dzh.-O., Nussbaumer G.Dzh., Zokhar Sh., Iustusson B.I., Tian Sh.-G. Fast Algorithms in Digital Image Processing. Transforms and Median Filters.  Moskva: Radio i Sviaz, 1984.  224 p. (Rus)
20. Shydlovskaya N.A., Zakharchenko S.N., Cherkassky A.P. Nonlianer-parametrical Model of Electrical Resistance of Conductive Granulated Media for a Wide Range of Applied Voltage. Tekhnichna Elektrodynamika.  2014.  No 6.  Pp. 3–17. (Rus)
21. Shcherba A.A., Zakharchenko S.M., Spіnul L.Yu. Patterns of Change of the Electrical Resistance of Layer of Aluminum Granules During their Electric Erosive Dispersion. Pratsi Instytutu elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2010.  Iss. 25.  Pp. 133–139. (Ukr)
22. Berkowitz A.E., Walter J.L. Spark Erosion: A Method for Producing Rapidly Quenched Fine Powders. Journal of Materials Research.  1987.  No 2.  Pp. 277–288.
23. Boudraa A.O., Cexus J.C. EMD-Based Signal Filtering. IEEE Transactions on Instrumentation and Measurement.  2007.  Vol. 56.  No 6.  Pp. 2196–2202.
24. Chen S.W., Lu X., Blackburn E., Lauter V., Ambaye H., Chan K.T., Fullerton E.E., Berkowitz A.E., Sinha S.K. Nonswitchable Magnetic Moments in Polycrystalline and (111)-epitaxial Permalloy / CoO exchange-biased bilayers.  Physical Review. 2014.  B 89.  Pp. 094419-1 – 094419-7.
25. Danilenko N.B., Savel`ev G.G., Yavorovskii N.A., Yurmazova T.A. Chemical Reactions in Electric Pulse Dispersion of Iron in Aqueous Solutions.  Russian Journal of Applied Chemistry.  2008.  Vol. 81.  No 5.  Pp. 803–809.
26. Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N.-Ch., Tung C.C, Liu H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proc. R. Soc. London A, Math. Phys. Sci. 1998.  Vol. 454.  Issue 1971.  Pp. 903–995.
27. Meyer Y. Wavelets and Operators.  Cambridge: Cambridge Univ. Press, 1992.  223 p.
28. Nguyen P.K., Lee K.H., Kim S.I., Ahn K.A., Chen L.H., Lee S.M., Chen R.K., Jin S., Berkowitz A.E. Spark Erosion: a High Production Rate Method for Producing Bi0.5Sb1.5Te3 Nanoparticles With Enhanced Thermoelectric Performance. Nanotechnology. 2012.  Vol. 23.  Pр. 415604-1 – 415604-7.
29. Perekos A.E., Chernenko V.A., Bunyaev S.A., Zalutskiy V.P., Ruzhitskaya T.V., Boitsov O.F., Kakazei G.N. Structure and Magnetic Properties of Highly Dispersed Ni-Mn-Ga Powders Prepared by Spark Erosion. J. Appl. Phys. 2012.  Vol. 112.  Pp. 093909-1 – 093909-7.
30. Shcherba A.A., Podoltsev A.D., Kucheryava I.N. Spark Erosion of Conducting Granules in a Liquid: Analysis of Electromagnetic, Thermal and Hydrodynamic Processes. Tekhnichna Elektrodynamika.  2004.  № 6.  С. 4–16.

 

PDF