PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2017.02.019

POWER CABLE DEFECTS AND THEIR INFLUENCE ON ELECTRIC FIELD DISTRIBUTION IN POLYETHYLENE INSULATION

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 2, 2017 (March/April)
Pages 19 – 24

 

Author
Kucheriava I.M.
Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

 

Abstract

The paper studies the cable degradation mechanisms and electric field distributions in the polyethylene insulation of power cables with typical defects at macroscopic level including crack and numerous air bubbles in the insulation, protrusion of inner semiconducting layer, its air gapping with cable insulation and interruption along the cable conductor, holes in outer semiconducting layer, its delamination from copper shield as well as small air hole in the shield owing to corrosion. The three-dimensional computer modeling and analysis of electric field distributions are carried out in the chosen region of the cable containing the defects. The patterns of the distributions and local field enhancement in the vicinity of the defects are shown. The effect of defects on electric field in the polyethylene cable insulation is revealed. References 11, figures 5.

 

Key words: polyethylene insulation, typical power cable defects, local electric field enhancement, three-dimensional computer modeling.

 

Received:    08.11.2016
Accepted:    26.12.2016
Published:   23.03.2017

 

References

1. Comsol multiphysics modeling and simulation software.  http://www.comsol.com/
2. Dissado L.A., Fothergill J.C. Electrical degradation and breakdown in polymers.  London: Peter Peregrinus Ltd. for IEE, 1992.  601 p. DOI: https://doi.org/10.1049/PBED009E
3. Hampton N.  HV and EHV cable system aging and testing issues. Chapter 3.  University System of Georgia, Institute of Technology NEETRAC – National Electric Energy Testing, Research and Application Center.  Georgia Tech Research Corporation, February 2016.  19 p.   http://www.cdfi.gatech.edu/publications/3-HV-Issues-7_with-Copyright.pdf
4. Hampton N., Hartlein R., Lennartsson H., Orton H., Ramachadran R. Long-life XLPE insulated power cable.  JiCable 2007.  http://www.neetrac.gatech.edu/publications/jicable07_C_5_1_5.pdf
5. Kucheriava I.M. Coupled electrical and mechanical processes in polyethylene insulation with water tree having branches of complex structure.  Tekhnichna Elektrodynamika. 2016.  № 5.  Pp. 5–10.
6. Podoltsev O.D., Kucheriava I.M. Multiphysics modeling in electrical engineering.  Kyiv: Institute of Electrodynamics of National Academy of Sciences, 2015.  305 p. (Rus)
7. Podoltsev O.D., Kucheriava I.M. Multiphysics processes in the region of inclusion in polyethylene insulation of power cable (three-dimensional modeling and experiment).  Tekhnichna Elektrodynamika.  2015.  No 3.  Pp. 3–9. (Rus)
8. Power cable failures.   http://www.openelectrical.org/wiki/index.php?title=Power_Cable_Failures
9. Shidlovskij A.K., Shcherba A.A., Zolotarev V.M., Podoltsev O.D., Kucheriava I.M. Extra-high voltage polymeric insulated cables.  Kyiv: Institute of Electrodynamics of National Academy of Sciences, 2013.  550 p. (Rus)
10. Shuvalov M.Yu., Romashkin A.V., Ovsienko V.L. Analysis of defects in high-voltage power cable insulation by methods of video-microscopy and micro-experiment. Elektrichestvo.  2000.  No 5.  Pp. 49–57. (Rus)
11. Weedy B.M. High-voltage cable lines.  Moskva: Energoatomizdat,1983.  232 p. (Rus)

 

PDF