PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2017.04.086

HARDWARE AND SOFTWARE METHOD OF THE OUTPUT SIGNAL TEMPERATURE DRIFT COMPENSATING OF THE METHANE CONCENTRATION OPTICAL METER

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Sciences of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 4, 2017 (July/August)
Pages 86 – 92

 

Authors
O.V. Vovna,*, A.A. Zori, I.S. Laktionov
Donetsk National Technical University,
Shybankova Square, 2, Pokrovsk, Donetsk region, 85300, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
*ORCID ID : http://orcid.org/0000-0003-4433-7097

 

Abstract

Processes in the developed optical methane concentration measurer are probed. It is determined that the additional error in measuring the methane concentration due to a change in temperature from + 5 to + 35°C, in (64 ÷ 142) times exceeds the regulated main error, which makes +/- 0,2 vol.%. A hardware-software method of the output signal tempera-ture drift compensating of the methane concentration meter has been developed and implemented. The LED of the measuring channel is used as a thermosensitive element in the measuring instrument, voltage drop on it is used as an information signal. Implementation of the proposed hardware-software method allowed to achieve the additional error magnitude of the methane concentration measuring from the temperature change, which doesn't exceed the basic one. References 10, figures 3.

 

Key words: optical measuring instrument, concentration, methane, temperature, compensation.

 

Received:    20.12.2016
Accepted:    16.05.2017
Published:   15.06.2017

 

References

1. Ajruni A.T., Klebanov F.S., Smirnov O.V. Potential explosions of coal mines. Moskva: Gornoe delo, 2011. 264 p. (Rus)
2. Vovna A.V., Zori A.A. Development and research of the radio-electronic optical methane concentration measuring instrument. 23 Intern. Conf.  SVCh-tekhnika i telekommunikatsionnye tekhnologii (KryMiKo'2013). Sevastopol, 2013. Pp. 984 – 985. (Rus)
3. Vovna A.V., Zori A.A. The temperature drift compensation method of the gas concentration optic meter. Izvestiia SFedU. Tekhnicheskie nauki. Tematicheskii vypusk Kompiuternye i Informatsionnye Tekhnologii v nauke, Inzhenerii i upravlenii. 2013. No 5 (142). Pp. 165 – 170. (Rus)
4. Vovna O.V. Optoelectronic measuring systems of methane and dust concentration in the underground air of coal mines.Pokrovsk (Krasnoarmiisk): Donetskyi Vyshchyi Navchalnyi Zaklad "DonNTU", 2016. 336 p. (Ukr)
5. The operating instruction for the methane measurement sensor module MDS-4.  LLC "LED Microsensor NT". Available at: http://lmsnt.com/datasheets/Electronics/MDS-4_ru-010416.pdf. (Accessed 18.11.2016). (Rus)
6. The mine’s gas-analytical instruments. General requirements, test methods. DSTU 24032:2009. Kyiv: Derzhspozhivstandart, 2009. 24 p. (Rus)
7. Specification LED 2700 – 5000 nm. – LLC "LED Microsensor NT". Available at: http://ru.lmsnt.com/download/download-led3. (Accessed 18.11.2016). (Rus)
8. Senkus V.V., Stefanjuk B.M., Lukin K.D. Explosion safety factor of the coal mine. Gornyi informatsionno-analiticheskii biulleten. 2008. Vol. 10. Pp. 23 – 27. (Rus)
9 Shubert F. Led emission diodes. Moskva: FIZMATLIT, 2008. 496 p. (Rus)
10. Abbasi T., Abbasi S. Dust explosions – cases, causes, consequences, and control. Journal of hazardous materials. 2007. Vol. 140. Iss. 1–2. Pp. 7 – 44. DOI: https://doi.org/10.1016/j.jhazmat.2006.11.007

 

PDF