PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2017.05.023

CRITERIA FOR THE NECESSARY AND SUFFICIENT NUMBER OF ITERATIONS OF FILTERING NON-PERIODIC NON-STATIONARY SIGNALS BY MULTI-ITERATIVE METHODS

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Sciences of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 5, 2017 (September/October)
Pages 23 – 31

 

Authors
N.A. Shydlovska, S.M. Zakharchenko, O.P. Cherkaskyi
Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript , Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript , Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

 

Abstract

An analysis of efficiency of procedure-oriented criteria for determining the required number of filtration iterations of non-stationary non-periodic signals by the multi-iterative method of the moving average with an increasing width of the filtering window on an instance of pulses of voltage on the plasma-erosive load and of current in it had fulfilled. Two main groups of criteria are considered which are based on a comparison of the signal at the current iteration of its filtering either with the signal at the previous iteration or with a reference signal. Also criterion which has properties of criteria of both these groups is considered. The low effectiveness and nonuniversality of the known criteria is shown. New objectively-oriented criteria for the necessary and sufficient number of iterations of filtering non-stationary non-periodic signals, adaptive to the requirements for further signal processing, are proposed and an analysis of their effectiveness had fulfilled. References 13, figures 2, tables 4.

 

Key words: non-stationary non-periodic signals, multi-iterative methods of signals filtering of, criteria necessary and sufficient number of iterations.

 

Received:     23.05.2017
Accepted:     03.07.2017
Published:   17.08.2017

 

References

1. Baskakov S.I. Radio engineering circuits and signals. Moskva: Vysshaia shkola, 1988. 448 p. (Rus)
2. Goronovsky I.S. Radio engineering circuits and signals. Moskva: Radio i sviaz, 1986. 512 p. (Rus)
3. Davydov A.V. Signals and Systems. Lectures and practical work on the PC. Introduction to Signals and Systems Theory. Available at: http://geoin.org/signals/index.html (Accessed 06.02.2017). (Rus)
4. Zagretdinov A.R., Busarov A.V., Busarov V.V. Comparison of methods for stopping sifting in the empirical mode decomposition of signals. Inzhenernyi vestnik Dona. 2015. No 3.  Available at: http://www.ivdon.ru/ru/magazine/archive/n3y2015/3238 (Accessed 06.02.2017). (Rus)
5. Matveyev Yu.N., Simonchik K.K., Tropchenko A.Yu., Khitrov M.V. Digital processing of signals. Sankt-Petersburg: S-PbNIU ITMO, 2013. 166 p. (Rus)
6. Tsidelko V.D., Yaremchuk N.A. Measurement uncertainty. Data processing and presenting the measurement result. Kyiv: Politekhnika, 2002. 176 p. (Ukr)
7. Shydlovska N.A., Zakharchenko S.M., Cherkaskyi O.P. Comparison of the smoothing efficiency of signals of voltage on the plasma-erosive load and its current by multi-iterative filtration methods. Tekhnichna Elektrodynamika. 2017. No 4. Pp. 3–13. (Ukr)
8. Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N.-Ch., Tung C.C, Liu H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. London A, Math. Phys. Sci. 1998. Vol. 454. Issue 1971. Pp. 903–995.
9. Kabir M.A., Shahnaz C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomedical Signal Processing and Control. 2012. No 7. Pp. 481–489. DOI: https://doi.org/10.1016/j.bspc.2011.11.003
10. Karthikeyan P., Murugappan M., Yaacob S. ECG signal denoising using wavelet thresholding techniques in human stress assessment. International Journal on Electrical Engineering and Informatics. 2012. Vol. 4. No 2. Pp. 306–319. DOI: https://doi.org/10.15676/ijeei.2012.4.2.9
11. Komaty A., Boudraa A.O., Augier B., Daré-Emzivat D. EMD-Based Filtering Using Similarity Measure Between Probability Density Functions of IMFs. IEEE Transactions on Instrumentation and Measurement. 2014. Vol. 63. No 1. Pp. 27–34. DOI: https://doi.org/10.1109/TIM.2013.2275243
12. Sadooghi M.S., Khadem S.E. A new performance evaluation scheme for jet engine vibration signal denoising. Mechanical Systems and Signal Processing. 2016. Vol. 76–77. Pp. 201–212. DOI: https://doi.org/10.1016/j.ymssp.2016.01.019
13. Yang G., Liu Y., Wang Y., Zhu Z. EMD interval thresholding denoising based on similarity measure to select relevant modes. Signal Processing. 2015. Vol. 109. Pp. 95–109. DOI: https://doi.org/10.1016/j.sigpro.2014.10.038