PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2017.05.083


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Sciences of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 5, 2017 (September/October)
Pages 83 – 88


I.P. Kondratenko1*, A.V. Zhyltsov2**, N.A. Pashchyn3***, V.V. Vasyuk2
1 – Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2 – National university of life and environmental sciences of Ukraine,
str. Heroyiv oborony, 12, Kyiv, 03041, Ukraina,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
3 – Paton Welding Institute NAS of Ukraine,
str. K. Malevycha, 11, Kyiv-150, 03680, Ukraine
* ORCID ID : http://orcid.org/0000-0003-1914-1383
** ORCID ID : http://orcid.org/0000-0002-1688-7879
*** ORCID ID : http://orcid.org/0000-0002-2201-5137



The features of electromechanics transformer construction of induction type are specified at application of it in a technological complex for electrodynamic treatment of the weld-fabricated connections, that consists in the simultaneous operating on a small limit area of surface of the weld-fabricated joint by impulsive electric current and mechanical force. Magnitude of current density and force, at which transformation of mechanical descriptions environments is possible, are indicated. Interrelationships of structural parameters of electromechanics transformer with by the size of electrodynamic force and current density at the set voltage magnitude on a capacity storage and width of discharge process are defined. It is defined that the diameter of contact mark at electrodynamic treatment of the weld-fabricated joints from aluminium alloys must make 2 - 2,5 mm. References 7, figures 5.


Key words: electromechanics transformer of induction type, welding tensions, electrodynamic force, current density.


Received:     07.04.2017
Accepted:     07.06.2017
Published:   17.08.2017



1. Baranov Yu.V., Troytskyy O.A., Avraamov Yu.S., Shlyapyn A.D. Physical fundamentals of electropulse and electroplastic treatments and new materials. Moskva: MGIU, 2001. 844 p. (Rus)
2. Bolyukh V.F., Danko V.G. Linear electromechanical pulse action converters. Kharkiv: Natsionalnyi Tekhnichnyi Universytet KhPI, 2006. 260 p. (Ukr)
3. Bolyukh V.F., Oleksenko S.V., Shchukin I.S. Comparative analysis of linear pulse electromechanical converters of electromagnetic and induction types. Tekhnichna Elektrodynamika. 2016. No 5. Pp. 46 – 48. (Rus)
4. Burkin S.P., Shimov G.V., Andryukova E.A. Residual stresses in metal products. Ekaterinburg: Izdatelstvo Uralskogo Universiteta, 2015. 248 p. (Rus)
5. Lobanov L.M., Kondratenko I.P., Zhyltsov A.V., Karlov A.M., Pashchin N.A., Vasyuk V.V., Yashchuk V.Y. Unstady electrophysical processes in systems for reducing residual stress of welded joints. Tekhnichna Elektrodynamika. 2016. No 6. Pp. 10–19. (Ukr)
6. Lobanov L.M., Pashchin N.A., Cherkashin A.V., Mikhoduy O.L., Kondarenko I.P. Efficiency of electro-dynamic treatment of aluminum alloy Amg6 and its welded joints. Automaticheskaia svarka. 2012. No 1. Pp. 3–7. (Rus)
7. Chernyshev G.N., Popov A.L., Kozintsev V.M., Ponomarev I.I. Residual stresses in deformable solids. Moskva: Nauka, 1996. 240 p. (Rus)