PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2017.05.089

EXPERIMENTAL PLANT FOR WATER PURIFICATION WITH THE HELP OF DISCHARGES IN GAS BUBBLES

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Sciences of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 5, 2017 (September/October)
Pages 89 – 95

 

Authors
N.I. Boyko, A.V. Makogon
National Technical University «Kharkov Polytechnic Institute»,
Kyrpychova st, 2, Kharkiv, 61002, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript ; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript ; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

 

Abstract

The dependence of the current and voltage on time in discharges in gas bubbles in water used for its purification is studied experimentally. It is shown that at the front of the current pulses with discharges in bubbles there is a kink, after which the rate of current increase sharply increases. The frequency of discharges in bubbles is 10,000 pulses / s at a voltage amplitude of 8 kV on the reactor - the load of the experimental setup generator and currents of 0.2 A in a high-voltage discharge circuit with discharges in gas bubbles. A high degree of purification of water used in coke production was obtained from phenols and thiocyanates. The possibility of improving the organoleptic parameters of water and reducing the biochemical oxygen consumption by it is shown. References 12, figures 5, table 1.

 

Key words: discharge in gas bubbles in water, experimental plant, generator, reactor, pulse transformer, water purification by discharges.

 

Received:     23.03.2017
Accepted:     23.06.2017
Published:   17.08.2017

 

References

1. Blaha O.V., Bozhko I.V., Zozuljov V.I., Kobylchak V.V. Perfection of power source for energy efficiency magnification of pulsed barrier discharge. Tekhnichna Elektrodynamika. 2014. No 6. Pp. 76–80. (Ukr)
2. Bozhko I.V., Kobylchak V.V. Power source for pulse electrodischarge technologies of water purification. Tekhnichna Elektrodynamika. 2014. No 3. Pp. 76 – 80. (Ukr)
3. Boyko N.I., Evdoshenko L.S., Ivanov V.M. Complex electrophysical method of water purification with organic pollutants after the production cycle. 11 Mizhnarodna naukovo-tekhnichna konferentsiia Fizychni protsesy ta polia tekhnichnykh i biolohichnykh obiektiv. Kremenchuk, 2012. Pp. 205–206. (Rus)
4. Boyko N.I., Evdoshenko L.S., Ivanov V.M. A compact high-voltage pulse generator with a disconnecting transistor switch and a high repetition rate. Pribory i tekhnika eksperimenta. 2014. No 4. Pp. 73–82. (Rus)
5. Boyko N.I., Evdoshenko L.S., Ivanov V.M., Khristenko O.A. Compact capacitive voltage divider at 70 kV with shielded intermediate electrode. Electrical engineering & Electromechanics. 2012. No 6. Pp. 41–46. (Rus)
6. Iossel Yu.Ya., Kochanov E.S., Strunskii M.H. Calculation of electrical capacity. Leningrad: Energoatomizdat. Leningradskoe otdelenie, 1981. 288 p. (Rus)
7. Marinin S.A., Osokin H.E., Kornev Ya.I. Electrical characteristics of pulse corona discharge in water-air stream. Sbornik nauchnykh trudov II Vserossiiskoi nauchno-tekhnicheskoi konferentsii molodykh uchenykh, aspirantov i studentov Vysokie tekhnologii v sovremennoi nauke i tekhnike. Vol. 1. Tomsk: Izdatelstvo Tomskogo politekhnicheskogo universiteta, 2013. Pp. 93–98. (Rus)
8. Rusin Yu.S. Calculation of electromagnetic systems. Leningrad: Energiia. Leningradskoe оtdelenie, 1968. 132 p. (Rus)
9. Samoilovich V.H., Hibalov V.I., Kozlov K.V. Physical chemistry of barrier discharge. Moskva: Izdatelstvo Moskovskogo Gosudarstvennogo Universiteta, 1989. 176 p. (Rus)
10. Locke Bruce R. Environmental Applications of Electrical Discharge Plasma with Liquid Water. International Journal of Plasma Environmental Science &Technology. 2012. Vol. 6. No 3. Pp. 194–203.
11. Preis S., Panorel I.C., Kornev I., Hatakka H. and Kallas J. Pulsed corona discharge: the role of ozone and hydroxyl radical in aqueous pollutants oxidation. Water Science & Technology. 2013. 68,(7). Pp. 1536–1542. DOI: https://doi.org/10.2166/wst.2013.399
12. Vanraes P., Nikiforov A.Y. and Leys C. Electrical discharge in water treatment technology for micropollutant decomposition.  Plasma science and technology – progress in physical states and chemical reactions. Chapter 15. 2016. Pp. 428–478. DOI: https://doi.org/10.5772/61830