PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2017.06.043


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Sciences of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 6, 2017 (November/December)
Pages 43 – 54


O.F. Butkevych1,2*, Y.V. Pylypenko1, V.V. Chyzhevskyi2, I.O. Elizarov1
1 – Institute of Electrodynamics of the National Academy of Sciences of Ukraine,
Peremohy avenue, 56, Kyiv-57, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2 – National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,
Peremohy avenue, 37, Kyiv-56, 03056, Ukraine
* ORCID ID : http://orcid.org/0000-0002-6613-0911



The cases of occurrence in 2016 - 2017 in the Interconnected Power System (IPS) of Ukraine the low-frequency oscillations (LFO) of IPS operational condition parameters were studied, and identification results of LFO modes are presented. These results testify to influence of the IPS’s circuit and operational conditions upon the composition and frequencies of LFO’ dominant modes. During these studies the results of phasor measuring of IPS operational condition parameters and an ensemble of specially selected methods of signal analysis were used. Necessary conditions for creating a system to monitor low-frequency oscillations in the IPS of Ukraine are determined. References 17, figures 5, tables 4.


Key words: Interconnected power system, phasor measurement unit, low-frequency oscillations, methods of signal analysis.


Received:    10.07.2017
Accepted:    05.10.2017
Published:   30.10.2017



1. Agamalov O.N., Butkevych A.F. The questions of an integrated excitation control system of synchronous machines construction in the interconnected power system. Tekhnichna Elektrodynamika. 2015. No 4. Pp. 57-61. (Rus)
2. Butkevych O.F., Chyzhevskyi V.V. Evaluation and decrease in real time of risk of oscillatory loss of Interconnected Power System stability. Tekhnichna Elektrodynamika. 2015. No 6. Pp. 46-52. (Ukr)
3. Butkevych O.F., Chyzhevskyi V.V. Some problems of integrated system construction for prevention of interconnected power system’s oscillatory instability. Power engineering: economics, technique, ecology. 2015. No 3 (41). Pp. 28-36. (Ukr)
4. Analysis of CE Inter-Area Oscillations of 19 and 24 February 2011. ENTSO-E SG SPD Report. ENTSO-E. 21.08.2011. 8 p. Available at: https://www.entsoe.eu/fileadmin/user_upload/_library/publications/entsoe/RG_SOC_CE/Top7_110913_CE_inter-area-oscil_feb_19th_24th_final.pdf
5. Arango O.J., Sanchez H.M., Wilson D.H. Low frequency oscillations in the Colombian Power System – identification and remedial actions. CIGRE Session 2010, August 22-27, Paris, France. Paper C2-105.
6. Despa D., Yasunori Mitani, Changsong Li, Masayuki Watanabe, Inter-Area Power Oscillation Mode For Singapore–Malaysia Interconnected Power System Based on Phasor Measurements with Auto Spectrum Analysis. Proceedings of the 17th Power Systems Computation Conference (PSCC) 2011, Stockholm, Sweden, 22–26 August, 2011. Vol. 2. Pp. 847–852.
7. Duan G., Sun X., T. Wu J., Yang D., Zhang Y. Low Frequency Oscillation Monitoring and Assessment in CSS200 WAMS. Proceedings of the Cigre 2-nd International Conference Monitoring of Power System Dynamics Performance, 28–30 April 2008, Saint Petersburg, Russian Federation. S2–5.  8 p.– Available at: http://www.twirpx.com/file/858201/
8. Identification of Electromechanical Modes in Power Systems. IEEE Task Force Report. Special Publication TP462. June 2012. IEEE Power & Energy Society. IEEE 2012. The Institute of Electrical and Electronic Engineers, Inc. 282 p.
9. Lin T.-H., Soo V.-W. Pruning Fuzzy ARTMAP Using the Minimum Description Length Principle in Learning from Clinical Databases. Ninth IEEE International Conference on Tools with Artificial Intelligence. Proceedings. 1997, November 3-8, Newport Beach, California. Pp. 396–403.
10. Lomei H, Sutanto D., Muttaqi K.M., and Assili M. A new approach to reduce the non-linear characteristics of a stressed power system by using the normal form technique in the control design of the excitation system. Industry Applications Society Annual Meeting, 18-22 Oct. 2015, Addison, TX, USA. Pp. 1-6. DOI:  https://doi.org/10.1109/IAS.2015.7356856
11. Nayfeh A.H. Method of Normal Forms. New York etc.: John Wiley & Sons, Inc., 1993. X11. 218 p.
12. Prasertwong K., Mirthulananthan N., Thakur D. Understanding low frequency oscillation in power systems. International Journal of Electrical Engineering Education. 2010. Vol. 47. No 3. Pp. 248–262. DOI: https://doi.org/10.7227/IJEEE.47.3.2
13. Report on the Grid Disturbances on 30th July and 31st July 2012: Submitted in Compliance to CERC Order in Petition No. 167/Suo-Motu/2012 dated 1st Aug. 2012.  129 р.  Available at: http://www.cercind.gov.in/2012/orders/Final_Report_Grid_Disturbance.pdf
14. Shi J.H., Li P., Wu X. C., Wu J. T., Lu C., Zhang Y., Zhao Y. K., Hu J. Implementation of an Adaptive Continuous Real-Time Control System Based on WAMS. Proccedings of the Cigre 2-nd International Conference Monitoring of Power System Dynamics Performance, 28–30 April 2008, Saint Petersburg, Russian Federation.  S1–12. 9 p.
15. Susuki Y., Mezic I., Raak F., Hikihara T. Applied Koopman Operator Theory for Power Systems Technology. Nonlinear Theory and Its Applications. 2016. Vol. 7. No 4. Pp. 430-459. DOI: https://doi.org/10.1587/nolta.7.430
16.UCTE. Final Report – System Disturbance on 4 November 2006.  30.01.2007.  84 p.  Available at: https://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/otherreports/Final-Report-20070130.pdf
17. Yang J.-Zh., Liu C.-Wen, Wu W.-Giang. A Hybrid Method for the Estimation of Power System Low-Frequency Oscillation Parameters. IEEE Trans. on Power Systems. 2007. Vol. 22. No 4. Pp. 2115–2123. DOI: https://doi.org/10.1109/TPWRS.2007.907405