PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2017.06.080

DEVELOPMENT OF COMPLEX FOR WATER TREATMENT WITH PULSE BARRIER DISCHARGE

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Sciences of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 6, 2017 (November/December)
Pages 80 – 87

 

Authors
I.V. Bozhko1*, A.M. Karlov1**, I.P. Kondratenko1***, D.V. Charnyi2
1 – The Institute of Electrodynamics of the NAS of Ukraine,
pr. Peremogy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2 – Institute of water problems and melioration NAAN Ukraine,
str. Vasylkivska, 37, Kyiv, 03022, Ukraine
* ORCID ID : http://orcid.org/0000-0002-7955-246X
** ORCID ID : http://orcid.org/0000-0002-1350-1870
*** ORCID ID : http://orcid.org/0000-0003-1914-1383

 

Abstract

Complex for direct processing of contaminated water with pulse dielectric barrier discharge is researched. It consists from a pulse generator and a discharge chamber. The generator is built on the principles of magnetic pulse compression and using of inductive energy storage device, which is switching with the diode with a small time interrupting reverse current (≈40 ns) . The generator provides short (~ 100 ns) high-voltage (up to 30 kV) pulses with the energy up to 0.3 J. Pulses acted on the surface of the water, which flowed a thin film (≈0.15 mm) on the surface of the inner electrode of coaxial chamber. In order to obtain the maximum efficiency of water treatment investigated ways of harmonizing the work of all units of the complex. The analysis of the energy loss in transmission from an external source to the load let to conclud that the basic parts of them are linking with the pulse transformer and end section generator connected with chamber. They are requiring careful coordination with other links generator and electrical parameters of the chamber. A processing an aqueous solution methylene blue with an initial concentration of 50 mg/l showed energy yield pulse dielectric barrier discharge at 50% due to impurities up to 75 g/kWh, and for complex as a whole – 22 g/kWh. References 10, figures 9.

 

Key words: pulse dielectric barrier discharge, treatment of water, loss of energy, energy yield.

 

Received:    24.03.2017
Accepted:    26.04.2017
Published:   30.10.2017

 

References

1. Bozhko I.V., Kobylchak V.V. Water treatment in the state of drops by pulse barrier discharge. Tekhnichna Elektrodynamika. 2015. No 5. Pp. 60–66. (Ukr)
2. Bozhko I.V., Zozuljov V.I., Kobylchak V.V. SOS- generator for the electric discharge technology used pulse barrier discharge. Tekhnichna Elektrodynamika. 2016. No 2. Pp. 63–68. (Ukr)
3. Samoilovich V.G., Gibalov V.I., Kozlov K.V. Physical chemistry of barrier discharge. Moskva: Moskovskii Gosudarstvennyi Universitet, 1989. 176 p. (Rus)
4. Biljana P. Dojchinovich, Goran M. Roglicb, Bratislav M. Obradovich,, Milorad M. Kuraicaca, Mirjana M. Kostich, Jelena Nesich, Dragan D. Manojlovich. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge. Journal of Hazardous Materials. 2011. No 192. Pp. 763–771.
5. Bo Jiang, Jingtang Zheng, Shi Qiu, Qinhui Zhang, Zifeng Yan, Qingzhong Xue. Review on electrical discharge plasma technology for wastewater. Chemical Engineering Journal. 2014. No 236. Pp. 348–363. DOI: https://doi.org/10.1016/j.cej.2013.09.090
6. Grinevich V.I., Kvitkova E.Y., Plastinina N.A., Rybkin V.V. Application of Dielectric Barrier Discharge for Waste Water Purification. Plasma Chem Plasma Process. 2011. No 31. Pp. 573–583. DOI: https://doi.org/10.1007/s11090-010-9256-1
7. Malik M.A. Synergistic effect of plasmacatalyst and ozone in a pulsed corona discharge reactor on the decomposition of organic pollutants in water. Plasma Sources Sci. Technol. 2003. No 12. Pp. 526–532. DOI: https://doi.org/10.1088/0963-0252/12/4/317
8. Monica Magureanu, Daniela Piroi, Nicolae Bogdan Mandache, Vasile Parvulescu. Decomposition of methylene blue in water using a dielectric barrier discharge: Optimization of the operating parameters. Journal of Applied Physics. 2008. No 104. Pp. 103306-1 – 103306-7.
9. Taichi Sugai; Akira Tokuchi; Weihua Jiang; Yasushi Minamitani. Investigation for Optimization of an Inductive Energy Storage Circuit for Electrical Discharge Water Treatment. IEEE Transactions on Plasma Science. 2014. Vol. 42. Issue 10. Pp. 3101–3108. DOI: https://doi.org/10.1109/TPS.2014.2304543
10. Shuhai Liu, Manfred Neiger. Excitation of dielectric barrier discharges by unipolar submicrosecond square pulses. J. Phys. D: Appl. Phys. 2001. No 34. Pp. 1632–1638. DOI: https://doi.org/10.1088/0022-3727/34/11/312