PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2017.06.088


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Sciences of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 6, 2017 (November/December)
Pages 88 – 93


I.O. Bragynets, O.G. Kononenko, Yu.A. Masjurenko*
The Institute of Electrodynamics of the NAS of Ukraine,
pr. Peremogy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : http://orcid.org/0000-0003-4209-1126



Authors considered the possibility of using laser frequency-phase ranging systems in the radar mode for evaluating the quality and shape of the controlled diffuse-reflecting surfaces. We carried out analytical studies of the output value of frequency-phase systems for non-uniformity of controlled surfaces. The spectrum of the system output signal is estimated in this case and the amplitudes of the individual components of the spectrum are determined, the values of which characterize surface state or its profile. References 10, figures 2.


Key words: laser, linear frequency modulation, radar, Fourier series, signal spectrum.


Received:    03.05.2017
Accepted:    14.07.2017
Published:   30.10.2017



1. Non-contact measuring system based on laser radar MV-300 from 02.2017.  Available at: http://nevatec.ru/wp-content/uploads/2016/10/mv300.pdf (Rus)
2. Bolshakov V.D., Deumlich F., Golubev A.N., Vasilev V.P. Radio-geodesic and electro-optical measurements. Moskva: Nedra, 1985. 303 p. (Rus)
3. Zaitsev E.A., Kononenko A.G., Masjurenko Yu.A., Nizhenskyi A.D., Latenko V.I., Ornatskyi I.A. Special features of a phase-frequency method application in a laser ranging. Tekhnichna Elektrodynamika. 2008. No 6. Pp. 65–70. (Rus)
4. Zaitsev E.A., Kononenko A.G., Masjurenko Yu.A., Nizhenskyi A.D., Latenko V.I., Ornatskyi I.A. Specific errors of phase-frequency laser distance meters. Tekhnichna Elektrodynamika. 2009. No 3. Pp. 50–54. (Rus)
5. Kulikov D.V., Dvojnishnikov S.V., Anikin Yu.A., Meledin V.G., Naumov I.V., Krotov S.V., Glavnyi V.G., Rakhmanov V.V., Bakakin G.V., Pavlov V.A., Shpolvind K.V., Kabardin I.K., Chubov A.S. Laser device to measure air gap of electric machine. Patent RU No 2469264, 2012 (Rus)
6. Downey J.M. A Stepped Frequency Continuous Wave Ranging Sensor for Aiding Pedestrian Inertial Navigation. 2012.Available at: http://repository.cmu.edu/cgi/viewcontent.cgi?article= 1110&context=dissertations
7. Joongsuk P. Development of microwave and millimeter-wave integrated-circuit stepped-frequency radar sensors for surface and subsurface profiling. 2003. Available at: http://oaktrust.library. tamu.edu/bitstream/handle/1969.1/1588/etd-tamu-2003C-ELEN-Park-1.pdf?sequence=1
8. Nguen C., Joongsuk P. Stepped-frequency radar sensors: Theory, Analysis and Design Available at: https://books.google.com.ua/books?id=I1XeCwAAQBAJ&printsec=frontcover&dq=Stepped-frequency+radar+sensors&hl=ru&sa=X&redir_esc=y#v=onepage&q=Stepped-frequency%20radar%20sensors&f=false
9. Van Trees Harry L. Detection, Estimation, and Modulation Theory. Part 1: Detection, Estimation, and Linear Modulation Theory.  USA, John Wieley and Inc, 2001.  690 p. DOI:  https://doi.org/10.1002/0471221082
10. Weiss J.M. Continuous-Wave Stepped-Frequency Radar for Target Ranging and Motion Detection. Available at: http://micsymposium.org/mics_2009_proceedings/mics2009_submission_64.pdf