PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2018.03.020

AS FOR CONCEPTION OF ELECTICAL VOLTAGE IN ELECTRICAL ENGINEERING

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 3, 2018 (May/June)
Pages 20 – 27

 

Authors
Podoltsev A.D*., Glykhenkyi O.I.**
Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript ; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : http://orcid.org/0000-0002-9029-9397
** ORCID ID : http://orcid.org/0000-0001-5053-5677

 

Abstract

In the paper the concepts of electrical voltage used in the circuit theory and electromagnetic field theory are compared. The voltage is defined as the difference in electric potentials in the circuit theory, but in the field theory there is no unique concept and the different definitions for voltage are used. As shown by two examples, the concepts of voltage in the circuit theory and field theory are consistent with each other and with the concept applied in practice if the voltage is defined as the line integral of the potential part of electric intensity E p= - ∇φ. Note that the first term on the right hand of the known expression for electric intensity E = - ∇φ - ∂A/∂t is the potential component only when the Cou-lomb gauge for vector magnetic potential is chosen as ∇•A=0 . Using such agreed concept, the particularities of volt-age measurement in AC circuit are considered. As revealed, under alternating magnetic field, the voltmeter indications can differ from the voltage at measurable points and this difference is associated with electromotive force induced in the connecting wires of the voltmeter. References 21, figures 3.

 

Key words: potential and vortex electric field, electric circuits, electromagnetic field, electric and magnetic potentials, voltage, Cou-lomb gauge.

 

Received:    16.11.2016
Accepted:    22.01.2018
Published:  13.04.2018

 

References

1. Glukhenkyi O.I. The theory and calculation of quasistationary electromagnetic field. Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2008. No 20. Pp. 89-90. (Ukr)
2. Glukhenkyi A.I., Goryslavets Y.M. Scalar electric and vector magnetic potentials in theory of electromag-netic field. Tekhnichna Elektrodynamika. 2012. No 2. Pp. 7-8. (Rus)
3. Demirchan К.S., Neiman L.R., Korovkin N.V., Chechurin V.L. Theoretical basics of electrical engineering. V.1. Sankt-Peterburg: Piter, 2004. 462 p. (Rus)
4. Nemkov V.S., Demidovich V.B. Theory and calculation of induction heating devices. Leningrad: Energo-atomizdat, 1988. 280 p. (Rus)
5. Podoltsev A.D., Kucheryavaya I.N. Multiphysics Modeling in Electrical Engineering. Кyiv: Institute of elec-trodynamics of NAS of Ukraine, 2015. 305 p. (Rus)
6. Polivanov K.M. To the 100th anniversary of the "Treatise on Electricity and Magnetism" by J.K. Maxwell. Elektrichestvo. 1974. No 1-3. (Rus)
7. Sotnikov V.V. Physical nature of stationary electric field and terminological definition of related quantities. Tekhnichna Elektrodynamika. 2017. No 3. Pp. 22-28. (Rus)
8. Tamm I.Е. Fundamentals of the theory of electricity: Textbook for high schools. Мoskva: Fizmatlit, 2003. 616 p. (Rus)
9. Shydlovskii A.K., Goryslavets Y.M., Glukhenkyi A.I. Electromagnetic dosing systems for liquid metal. Кyiv: Institute of electrodynamics of NAS of Ukraine, 2011. 208 p. (Rus)
10. Chua L.O., Desoer C.O., Kuh E.S. Linear and Nonlinear Circuits. McGraw-Hill Book Company, 1987. 839 p.
11. International standard IEC 60050 International Electrotechnical Vocabulary, Part 121, 131. URL: http://www.electropedia.org/ (Accessed at 10.01.2018)
12. Dukov V.М. Electrodynamics (history and methodology of macroscopic electrodynamics). Мoskva: Vysshaia shkola, 1975. 248 p. (Rus)
13. Maxwell J.C. A treatise on Electricity and Magnetism. V. II. Мoskva: Nauka, 1989. 431 p. (Rus)
14. Kupfmyuller K. The basics of theoretical electrical engineering. Мoskva: Gosenergoizdat, 1960. 464 p. (Rus)
15. State standard of the Russian Federation Р 52002-2003 Electrotechnics. Terms and definitions of basic concepts. Мoskva, Gosstandart Rossii, 2003. 31 p. (Rus)
16. State Standard of Ukraine 2843-94 Electrical engineering. Basic concepts. Terms and definitions. Kyiv, DP "UkrNDNTs", 1995. 36 p. (Ukr)
17. Detlaf А.А., Yavorskii B.M. Physics course. Мoskva: Vysshaia shkola, 1989. 608 p. (Rus)
18. Ramo S., Whinnery J. Fields and Waves in Modern Electronics. Мoskva: OGIZ, 1948. 631 p. (Rus)
19. Kron G. Electric circuit models of partial differential equations. Electrical Engineering. 1948. Vol. 67. Is. 7. P. 672-684.
20. Borisov A.I., Tarapov I.E. Vector analysis and the beginning of tensor calculus. Kyiv: Vyshcha shkola, 1978. 216 p. (Rus)
21. Zeveke G.V., Ionkin P.А., Netushyl А.V., Strahov S.V. Basis of electrical circuits. Мoskva: Energo-atomizdat, 1989. 528 p. (Rus)

PDF