PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2018.03.082

ORDERED SAMPLES IN UNCORRELATED SIGNAL CONVERSION

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 3, 2018 (May/June)
Pages 82 – 89

 

Author
R.O. Mazmanian*
Institute of electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : http://orcid.org/0000-0003-1178-4974

 

Abstract

The coherence function for an arbitrary pair the input sequence – a given element of ordered samples random data’s is defined. The essentially nonlinear character of this data processing method is established. Parametric and statistical estimates of the proximity of median transformations to the normal Gaussian distribution law are obtained. A technique for applying the Pearson criterion for estimating the statistical proximity of analytically defined functions is presented. References 15, figures 7.

 

Key words: sliding samples, uncorrelated sequence, median filter, approximation, Pearson's criterion.

 

Received:    08.09.2017
Accepted:    12.12.2017
Published:  13.04.2018

 

References

1. Tukey J.W. Nonlinear (Nonsuperposable) Methods for Smoothing Data. Proceedings of Congress Record EASCON, Washington DC, 7-9 October 1974. P. 673.
2. Mazmanian R.O. On some properties of the median transformations of measurement information. Tekhnichna Elektrodynamika. 2003. No. 6. P. 70-75. (Rus)
3. Mazmanian R.O. Characteristics of ordered samples of a random uncorrelated signal. Tekhnichna Elektrodynamika. 2004. No 6. P. 60-64. (Rus)
4. Venttsel E.S., Ovcharov L.A. Probability theory. Moskva: Nauka, 1973. 366 p. (Rus)
5. Otnes R., Enokson L. Applied time series analysis. Basic techniques. Moskva: Mir, 1982. 428 p. (Rus)
6. Mazmanian R.O. Spectral characteristics of ordered samples of a random uncorrelated signal. Tekhnichna Elektrodynamika. 2009. No 5. P. 63-68. (Rus)
7. Mazmanian R.O. Experimental studies of data transformation by sliding ordered samples. Tekhnichna Elektrodynamika. 2012. No 1. P. 78-86.
8. Tsyimbal V.P. Information theory and coding. Kyiv: Vyshcha shkola, 2003. 178 p. (Rus)
9. Huang T.S., Eklund Dzh.-O., Nussbaumer G.Dzh. Fast algorithms in digital image processing. Moskva: Radio i sviaz, 1984. 224 p. (Rus)
10. Eliseeva I.I., Yuzbashev M.M. General Theory of Statistics: textbook. Moskva: Finansy i statistika, 2001. 480 p. (Rus)
11. Tesler G.S., Zyi Hak Zung. Calculation of the function of the probability integral and its inverse. Matematychni mashyny i systemy. 2004. No 3. P. 31-40. (Rus)
12. Popov B.A., Tesler G.S. Calculation of functions on a computer. Handbook. Kiev: Naukova dumka, 1984. 600 p. (Rus)
13. Iglin S.P. Theory of Probability and Mathematical Statistics on the Basis of MATLAB: Manual. Kharkiv: NTU KhPI, 2006. 612 p. (Rus)
14. MathCAD 15. (2014). User’s Guide, Mathsoft Engineering & Education, Inc. Cambridge, MA.
15. Chandrakantha L. Simulating Chi-Square Test using Excel. Electronic Proceedings of the 25th Annual International Conference on Technology in Collegiate Mathematics (ICTCM), March, 2013, Boston, MA. P 50-58.