PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2018.04.029

MITIGATION OF THREE-PHASE POWER LINE MAGNETIC FIELD BY GRID ELECTROMAGNETIC SHIELD

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 4, 2018 (July/August)
Pages 29 – 32

 

Author
V.S. Grinchenko*
State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine”,
19, Industrialna st., Kharkiv, 61106, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : http://orcid.org/0000-0002-6195-3011

 

Abstract

This paper deals with the mitigation of the three-phase power line magnetic field by a grid electromagnetic shield. The shield is made of a set of wires located in the same plane and connected in parallel. Shielding characteristics of three equivalent metal capacity grid shields, consisting different number of wires and having different wire cross-sections and different distances between wires, is studied by numerical simulation. To justify the possibility of the three-phase power line magnetic field mitigation, the magnetic field distributions for a grid shield and an equivalent metal capacity flat shield are calculated. References 10, figures 5.

 

Key words: power line, magnetic field, shielding, electromagnetic shield, grid shield, simulation.

 

Received:    06.03.2018
Accepted:   14.03.2018
Published:

 

References

1. Rezinkina M.M., Grinchenko V.S. Usage of electromagnetic shields for power frequency magnetic field mitigation in power industry. Tekhnichna Elektrodynamika. 2012. No 3. Pp. 15-16. (Rus)
2. Rezinkina М.М., Shcherba А.А., Grinchenko V.S., Rezinkina K.O. Calculation choice of parameters of electromagnetic screens of complicated three-dimensional configuration. Tekhnichna Elektrodynamika. 2012. No 1. Pp. 10-16. (Rus)
3. Bavastro D., Canova A., Freschi F., Giaccone L., Manca M. Magnetic field mitigation at power frequency: design principles and case studies. IEEE Transactions on Industry Applications. 2015. Vol. 51. No 3. Pp. 2009-2016. DOI: https://doi.org/10.1109/TIA.2014.2369813 .
4. Burnett J., Du Yaping P. Mitigation of extremely low frequency magnetic fields from electrical installations in high-rise buildings. Building and Environment. 2002. Vol. 37. No 8-9. Pp. 769-775. DOI: https://doi.org/10.1016/S0360-1323(02)00043-4 .
5. Canova A., Bavastro D., Freschi F., Giaccone L., Repetto M. Magnetic shielding solutions for the junction zone of high voltage underground power lines. Electric Power Systems Research. 2012. No 89. Pp. 109-115. DOI: https://doi.org/10.1016/j.epsr.2012.03.003 .
6. Cruz Romero P.L., Del-Pino-López J.C. Magnetic field shielding of underground cable duct banks. Progress In Electromagnetics Research. 2013. No 138. Pp. 1-19.
7. De Wulf M., Wouters P., Sergeant P., Dupre L., Hoferlin E., Jacobs S., Harlet P. Electromagnetic shielding of high-voltage cables. Journal of Magnetism and Magnetic Materials. 2007. No 316. Pp. 908-911. DOI: https://doi.org/10.1016/j.jmmm.2007.03.137
8. Kaden H. Wirbelströme und Schirmung in der Nachrichtentechnik. Springer Berlin Heidelberg, 1959. DOI: https://doi.org/10.1007/978-3-540-32570-3
9. Rozov Volodymyr, Grinchenko Volodymyr. Simulation and analysis of power frequency electromagnetic field in buildings closed to overhead lines. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering. 2017. Pp. 500-503. DOI: https://doi.org/10.1109/UKRCON.2017.8100538
10. Salinas E., Rezinkina M., Atalaya J. Some 2D–3D aspects of shielding of longitudinal sources of extremely low frequency magnetic fields. The Environmentalist. 2009. Vol. 29. No 2. Pp. 141-146. DOI: https://doi.org/10.1007/s10669-008-9206-0

PDF