PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2018.04.094


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 4, 2018 (July/August)
Pages 94 – 97


O.V. Fesiuk1*, P.I. Stetsyuk2**, O.F. Butkevych3***
1,2 – Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine,
40 Glushkov ave., Kyiv, 03187, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
3 – Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : http://orcid.org/0000-0002-9308-0083
** ORCID ID : http://orcid.org//0000-0003-4036-2543
*** ORCID ID : http://orcid.org/0000-0002-6613-0911



Functionality features of the web-based system Maneuver-New that is designed for solving integer-valued, linear, and nonlinear programming problems, and its using for finding the optimal load of power units of thermal power plants are described. The results of comparison of the obtained solution of the test task with the solution published abroad are presented. These results testify to the advantages of the developed Maneuver-New system. References 8, figures 2, tables 2.


Key words: thermal power plants units' optimal loading, ED- and UC-problems, NEOS-server, r algorithm.


Received:    02.03.2018
Accepted:   20.03.2018



1. Butkevych O.F., Rybina O.B. Optimization problems of the dispatcher control of territorially-distributed electric power objects and synthesis of the means for their solving. Tekhnichna Elektrodynamika. 2000. Temat. vypusk Problemy suchasnoi elektrotekhniky. Part 3. Pp. 99-103. (Rus)
2. Stetsyuk P.I. Methods of ellipsoids and r-algorithms. Chisinau: Evrika, 2014. 488 p. (Rus)
3. Hassan Z.G., Ezzat M., Abdelaziz A.Y. Solving unit commitment and economic load dispatch problems using modern optimization algorithms. International Journal of Engineering, Science and Technology. 2017. Vol. 9. No 4. Pp. 10-19. DOI: https://doi.org/10.4314/ijest.v9i4.2
4. NEOS Server: State-of-the-Art Solvers for Numerical Optimization. URL: https://neos-server.org/neos/
5. Shor N.Z. Minimization Methods for Non-Differentiable Functions. Berlin: Springer-Verlag, 1985. 178 p. DOI: https://doi.org/10.1007/978-3-642-82118-9
6. Tung N.S., Bhadoria A., Bhardwaj A. Start up Cost constraint Optimization using Lagrangian Algorithm for Unit Schedule in Electrical Power System. International Journal of enhanced research in Science Technology & Engineering. 2013. Vol. 2. Issue 1. Pp. 1-7.
7. Yuan X., Wang L., Zhang Y., Yuan Y. A hybrid differential evolution method for dynamic economic dispatch with valve-point effects. Expert Systems with Applications. 2009. Vol. 36. Pp. 4042–4048. DOI: https://doi.org/10.1016/j.eswa.2008.03.006
8. Zivic Djurovic M., Milacic A., Krsulja M. A simplified model of quadratic cost function for thermal generators. Proceedings of the 23rd International DAAAM Symposium. 2012. Vol. 23. No 1. Pp. 25–28.