PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2018.06.014

PROBABILISTIC PROPERTIES OF ELECTRICAL CHARACTERISTICS OF CAPACITOR CHARGE CIRCUIT WITH STOCHASTIC ACTIVE RESISTANCE

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 6, 2018 (November/December)
Pages 14 – 17

 

Authors
А.А. Shcherba1*, N.I. Suprunovska1**, D.S. Ivashchenko2
1 – Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2 – Oracle, 1501 4th Ave, Seattle, WA 98101, US,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : http://orcid.org/0000-0002-0200-369X
** ORCID ID : http://orcid.org/0000-0001-7499-9142

 

Abstract

The approach to the determination of the probability properties (probability density function, probability distribution function, mathematical expectation) of the electrical characteristics of the circuits of electric discharge installations whose active resistance can be changed at random is proposed. It is assumed that such a stochastic resistance is characterized by a continuous random variable whose probabilistic properties are known. As an example, probabilistic properties of the voltage on a capacitor in a first-order circuit with a stochastic active resistance having a uniform probability distribution were investigated. References 10, figures 3.

 

Key words: transient processes, stochastic resistance, random process, continuous probability distribution.

 

Received:    02.03.2018
Accepted:    14.03.2018
Published:   23.10.2018

 

References

1. Livshitz A.L., Otto M.Sh. Pulse electrotechnology. Moscow: Energoatomizdat, 1983. 352 p. (Rus)
2. Shcherba A.A., Suprunovskaya N.I., Ivashchenko D.S. Modeling of nonlinear resistance of electro-spark load taking in to account its changes during discharge current flowing in the load and at zero current in it. Tekhnicna Elektrodynamika. 2014. No 5. Pp. 23–25. (Rus)
3. Volkov I.V., Vakulenko V.M. Sources for power supply of lasers. Kiev: Tekhnika, 1976. 176 p. (Rus)
4. Suprunovska N.I., Shcherba A.A., Ivashchenko D.S. Processes of energy exchange between nonlinear and linear links of electric equivalent circuit of supercapacitors. Tekhnichna Electrodynamika. 2015. No 5. Pp. 3–11. (Rus)
5. Vovchenko A.I., Tertilov R.V. Synthesis of capacitive non-linear- parametrical energy sources for discharge-pulse technologies. Zbirnyk naukovyh pratz Natsionalnogo universytetu korablebuduvannya. Mykolaiv, 2010. No 4. Pp. 118–124. (Rus)
6. Ivashchenko D.S., Suprunovska N.I. Transients in circuits with stochastic load, which characterized by continuous random variable. Tekhnichna Elektrodynamika. 2016. No 4. Pp. 17 – 19. (Rus) DOI: https://doi.org/10.15407/techned2016.04.017
7. Lisyev V.P. Probability theory and the mathematical statistics. Moscow: MESI, 2006. 199 p. (Rus)
8. Ventsel E.S., Ovcharov L.A. Probability theory and its engineering applications. Moscow: Vysshaya shkola, 2000. 480 p. (Rus)
9. Kash'yap R.L., Rao А.R. Construction of dynamic stochastic models based on experimental data. Moscow: Nauka. Glavnaya redaktsiya fiziko-matematicheskoy literatury, 1983. 384 p. (Rus)
10. Demirchyan K.S., Nejman L.R., Korovkin N.V., Chechurin V.L. Electrical engineering theory. Vol. 2. Saint-Petersburg: Piter, 2003. 576 p. (Rus)