PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2018.06.089

EFFICIENCY OF TREATMENT OF AQUEOUS SOLUTION OF METHYLENE BLUE VIA EXPOSURE TO PULSE DIELECTRIC BARRIER DISCHARGE TO THE SURFACE

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 6, 2018 (November/December)
Pages 89 – 97

 

Authors
I.V. Bozhko*, I.P. Kondratenko**
Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
* e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
** e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : http://orcid.org/0000-0002-7955-246X
** ORCID ID : http://orcid.org//0000-0003-1914-1383

 

Abstract

The decomposition of organic contaminant (methylene blue) to water due to pulse barrier discharge on the surface o fine film (~0,1 mm) of the liquid was studied. Water treatment took place in the air and nitrogen at atmospheric pressure in coaxial discharge chamber with speed of rise of pulse voltage ≈ 3 • 1011 V/s. The influence of energy and frequency discharge pulses, and also parameter gas and liquid movement through discharge camera was investigated on the energy efficiency of water treatment. It has been established that to obtain high energy efficiency pulse barrier discharge water treatment should be carried out with such the discharge parameters and speed of movement of the air in the discharge chamber ~ 1 cm/s, which provide process with ozone concentration to ≈ 1,5 mg/l. The highest energy yield pulse barrier discharge that was obtained in this work when processing an aqueous solution of methylene blue under the condition of an initial concentration of 50 mg/l and 65% of its degradation equal to 87 g/kWh. It has been shown that the main oxidizing agents are ozone and hydroxyl radical, whose relative importance in the degradation of methylene blue is estimated as 4:1. Further oxidation of impurities takes place approximately 50 hours after completion of discharge. This can lead to a marked reduction in the concentration of impuritie (up to 10%). References 12, figures 12.

 

Key words: pulse dielectric barrier discharge, decomposition of organic contaminant to water, methylene blue, energy yield.

 

Received:    25.02.2018
Accepted:    19.06.2018
Published:   23.10.2018

 

References

1. Fangmin Huang, Li Chen, HonglinWang, Zongcheng Yan. Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma. Chemical Engineering Journal. 2010. Vol. 162. Pр. 250–256.
2. Bo Jiang, Jingtang Zheng, Shi Qiu, Qinhui Zhang, Zifeng Yan, Qingzhong Xue. Review on electrical discharge plasma technology for wastewater. Chemical Engineering Journal. 2014. No 236. Pp. 348-363.
3. Biljana P. Dojchinovich, Goran M. Roglicb, Bratislav M. Obradovich, Milorad M. Kuraicaca, Mirjana M. Kostich, Jelena Nesich, Dragan D. Manojlovich. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge. Journal of Hazardous Materials. 2011. No 192. Рр. 763–771.
4. Vesna V. Kovacevic, Biljana P. Dojcinovi, Milica Jovic, Goran M. Roglic, Bratislav M. Obradovic, Milorad M. Kuraica. Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres. Journal Physics. D: Applied Physics. 2017. Vol. 50. Pр. 155205-1 – 155205-19.
5. Monica Magureanu, Daniela Piroi, Nicolae Bogdan Mandache, Vasile Parvulescu. Decomposition of methylene blue in water using a dielectric barrier discharge: Optimization of the operating parameters. Journal of Applied Physics. 2008. No 104. Рр. 103306-1 – 103306-7.
6. Muhammad Arif Malik, Abdul Ghaffar, Salman Akbar Malik. Water puri?cation by electrical discharges. Plasma Sources Science and Technology. 2001. No 10. Рр. 82–91.
7. Shen Zhao, Chunjing Hao, Di Xu, Yiyong Wen, Jian Qiu, Kefu Liu. Effect of Electrical Parameters on Energy Yield of Organic Pollutant Degradation in a Dielectric Barrier Discharge Reactor. IEEE Transactions on Plasma Science. 2017. Vol. 45. Issue 6. Pр. 1043–1050.
8. Bozhko I.V., Karlov A.N., Kondratenko I.P., Charnyj D.V. Development of complex for water treatment with pulse barrier discharge. Tekhnichna Elektrodynamika. 2017. No 6. Pp. 80?86. (Ukr)
9. Bozhko I.V., Serdyuk Y.V. Determination of Energy of a Pulsed Dielectric Barrier Discharge and Method for Increasing Its Efficiency. IEEE Transactions on Plasma Science. 2017. Vol. 45. Issue 12. Pр. 3064–3069.
10. Hibert C., Gaurand I., Motret O., Pouvesle J.M. [OH(X)] measurements by resonant absorption spectro-scopy in a pulsed dielectric barrier discharge. Journal of applied physics. 1999. Vol. 85. No 10. Pp. 7070–7075.
11. Glaze W.H. Drinking-water treatment with ozone. Environment science technology. 1987. Vol. 21. No 3. Pp. 224–230.
12. Zhang T., Oyama T., Aoshima A., Hidaka H., Zhao J., Serpone N. Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiatio. Journal of Photochemistry and Photobiology A: Chemistry. 2001. Vol. 140. Pp. 163-172.