PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2019.02.063


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 2, 2019 (March/April)
Pages 63 – 71

V.I. Pankiv, E.M. Tankevych*

Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : http://orcid.org/0000-0002-0869-4049


The saturation index, its threshold value and characteristics of known current transformer (CT) saturation detection methods are determined. A description of the mathematical model (MM) of the three-phase primary measuring channel (PMC) of current, which consists of a model of the group of CT, each of which is represented by a MM based on the Jiles-Atherton theory of ferromagnetic hysteresis for digital analysis and signals processing is depicted. Using the developed MM of the three-phase PMC and the software environment, a number of known methods of saturation detection have been implemented, and their main features, characteristics, advantages and disadvantages have been established. The noise-immune and precise method of online CT saturation detection, which are the part of the three-phase PMC under the fault condition of power system has been developed. Characteristics of the method are confirmed experimentally. References 31, figures 5, table 1.


Key words: fault current, current transformer, saturation, discrete Fourier transform, method.


Received:    26.09.2018
Accepted:    05.02.2019
Published:  19.02.2019


1. Tankevych E.M. Primary measuring channels of complex automation systems of electric power objects: Dr. tech. sci. diss.: 05.14.02. Institute of Electrodynamics NAN of Ukraine. Kyiv. 2004. 445 p. (Ukr)
2. Pan J., Vu K., Hu Y. An efficient compensation algorithm for current transformer saturation effects. IEEE Transaction on power delivery. 2004. Vol. 19. No 4. Pp. 1623-1628. DOI: https://doi.org/10.1109/TPWRD.2004.835273
3. Hong Y.-Y., Wei D.-W. Compensation of distorted secondary current caused by saturation and remanence in a current transformer. IEEE Transactions on power delivery. 2010. Vol. 25. No 1. Pp. 47-54. DOI: https://doi.org/10.1109/TPWRD.2009.2034820
4. Rebizant W., Daniel B. Current transformer saturation detection with genetically optimized neural networks. IEEE Transaction on power delivery. 2007. Vol. 22. No 2. Pp. 820-827. DOI: https://doi.org/10.1109/TPWRD.2007.893363
5. Al-Abbas N. H. Efficient proposed solutions for current transformers saturation effects on overcurrent relays operations in distribution systems. Proceedings of the 44thInternational Universities power engineering conference. Great Britain, Glasgow, 1-4 September 2009. Pp. 1-6.
6. El-Amin I.M., Al-Abbas N.H. Saturation of current transformers and its impact on digital overcurrent relays. IEEE/PES Transition and distribution conference and exposition. Latin America, Caracas, 15-18 August 2006. Pp. 1-6.
7. Terrence S., Hunt R. Current transformer saturation effects on coordinating time interval. Conference record of 2012 annual IEEE Pulp and paper industry technical conference. USA, Portland, 17-21 June 2012. Pp. 1-7.
8. Lin X., Zou L., Tian Q., Weng H., Liu P. A series multiresolution morphological gradient-based criterion to identify CT saturation. IEEE Transaction on power delivery.2006. Vol. 21. No 3. Pp. 1169-1175. DOI: https://doi.org/10.1109/TPWRD.2005.861338
9. Villamagna N., Crossley P.A. A CT saturation detection algorithm using symmetrical components for current differential protection. IEEE Transaction on power delivery. 2006. Vol. 21. No 1. Pp. 38-45. DOI: https://doi.org/10.1109/TPWRD.2005.848654
10. Kang Y.C., Yun J.S., Lee D.E., Kang S.H., Jang S.I., Kim Y.G. Busbar differential protection in conjunction with a current transformer compensating algorithm. IEEE Transaction on power delivery. 2008. Vol. 2. No 1. Pp. 100-109.
11. Davarpanah M., Sanaye-Pasand M., Irvani R. Performance enhancement of the transformer restricted earth fault relay. IEEE Transaction on power delivery. 2013. Vol. 28. No 1. Pp. 467-474. DOI: https://doi.org/10.1109/TPWRD.2012.2208204
12. Stognii B.S., Sopel M.F., Tretiakova L.D., Tankevych E.M., Panov A.V., Pankiv V.I. Evaluation of high-voltage circuit breaker interruption resource. Tekhnichna Elektrodynamika. 2017. No. 1. Pp. 71–80. (Ukr)
13. Stognii B.S., Sopel M.F., Pankiv V.I., Tankevych E.M. Modeling of electromagnetic processes in groups of high-voltage current transformers. Visnyk Vinnytskoho Politeknichnoho Instytutu. 2016. No1. Pp. 91-95. (Ukr)
14. Stognii B.S., Sopel M.F., Pankiv V.I., Tankevych E.M. Current transformer mathematical model based on the Jiles-Atherton theory of ferromagnetic hysteresis. Tekhnichna Elektrodynamika. 2016. No 3. Pp. 58-65. (Ukr)
15. Schettino B.M., Duque C.A., Silveire P.M., Ribeiro P.F., Cerque A.S. A new method of current transformer saturation detection in the presence of noise. IEEE Transaction on power delivery. 2014. Vol. 29. No 4. Pp. 1760-1767. DOI: https://doi.org/10.1109/TPWRD.2013.2294079
16. Wiszniewski A., Rebizant W., Schiel L. Correction of current transformer transient performance. IEEE Transaction on power delivery. 2008. Vol. 23. No 2. Pp. 624-632. DOI: https://doi.org/10.1109/TPWRD.2008.915832
17. Kgorashadi-Zadeh H., Sanaye-Pasand M. Correction of saturated current transformers secondary current using ANNs. IEEE Transactions on power delivery. 2006. Vol. 21. No 1. Pp. 73-79. DOI: https://doi.org/10.1109/TPWRD.2005.858799
18. Yu C.-S. Detection and correction of saturated current transformer measurements using decaying DC components. IEEE Transactions on power delivery. 2010. Vol. 25. No 3. Pp. 1340-1347. DOI: https://doi.org/10.1109/TPWRD.2010.2045137
19. Chothani N.G., Bhalja B.R. New algorithm for current transformer saturation detection and compensation based on derivatives of secondary current and Newton`s backward difference formulae. IET generation, transmission and distribution. 2014. Vol. 8. No 5. Pp. 841-850. DOI: https://doi.org/10.1049/iet-gtd.2013.0324
20. Ji T.Y., Wu Q.H., Tang W.H., Jiang L. A morphological scheme for the correction of CT saturation waveforms. IEEE Power and energy society general meeting. Detroit, MI, USA, 24-29 July 2011. Pp. 1-7.
21. Hooshyar A., Sanaye-Pasand M., Davarpanah M. Development of a new derivative-based algorithm to detect current transformer saturation. IET Generation, transmission and distribution. 2012. Vol. 6. No 3. Pp. 207-217. DOI: https://doi.org/10.1049/iet-gtd.2011.0476
22. Hong Y.-Y., Chang-Chian P.-C. Detection and correction of distorted current transformer current using wavelet transform and artificial intelligence. IET generation, transmission and distribution. 2008. Vol. 2. No 4. Pp. 866-575. DOI: https://doi.org/10.1049/iet-gtd:20070383
23. Kang Y.C., Ok S.H., Kang S.H., Crossley P.A. Design and evaluation of an algorithm for detecting current transformer saturation. IEE Processing generation, transmission and distribution. 2004. Vol. 151. No 1. Pp. 27-35.
24. Dashti H. Sanaye-Pasand M., Davarpanah M. Current transformer saturation detectors for busbar differential protection. 42nd International Universities Power Engineering Conference. Brighton, U.K. 2007. Pp. 338-343. DOI: https://doi.org/10.1109/UPEC.2007.4468971
25. Kang Y.C. Kang S.H., Crossley P. An algorithm for detecting CT saturation using the secondary current third difference function. IEEE Bologna Powertech conference proceedings. Bologna, Italy, 23-26 June 2003. Pp. 320-325.
26. Li F., Li Y., Aggarwal R. K. Combined wavelet transform and regression technique for secondary current compensation of current transformers. IEE Processing generation, transmission and distribution. 2002. Vol. 149. No 4. Pp. 497-503.
27. Lu Z., Smith J. S., Wu Q. H. Morphological lifting scheme for current transformer saturation detection and compensation. IEEE Transaction on circuits systems. 2008. Vol. 55, No 10. Pp. 3349-3357. (Eng)
28. Hooshyar A., Sanaye-Pasand M. CT saturation detection based on waveform analysis using a variable-length window. IEEE Transaction on power delivery. 2011. Vol. 26. No 3. Pp. 2040–2050. DOI: https://doi.org/10.1109/TPWRD.2011.2142404
29. Dashti H., Sanaye-Pasand M., Davarpanah M. Fast and reliable CT saturation detection using a combined method. IEEE Transaction on power delivery. 2009. Vol. 24. No 3. Pp. 1037–1044. DOI: https://doi.org/10.1109/TPWRD.2009.2022666
30. Kang Y.C., Ok S.H., Kang S.H. A CT saturation detection algorithm. IEEE Transaction on power delivery. 2004. Vol. 19. No 1. Pp. 78-85. DOI: https://doi.org/10.1109/TPWRD.2003.820200
31. Pankiv V.I. Tankevych E.M. Spectral analysis of the primary measuring channels of high-voltage power system substations. Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2018. Vol. 51. Pp. 13-20. (Ukr)