PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2019.03.046

DETERMINATION OF THE INFLUENCE OF CHANGES IN THE LIMITS OF THE INPUT VOLTAGE RANGE ON THE POWER OF A TRANSFORMER ELEMENT OF A VOLTAGE STABILIZER WITH A TRANSFORMER-AND-SWITCHES EXECUTIVE STRUCTURE

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 3, 2019 (May/June)
Pages 46 – 54

 

Authors
K.O. Lypkivskyi*, A.G. Mozharovskyi**
Institute of Electrodynamics National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript ; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : http://orcid.org/0000-0002-3292-1360
** ORCID ID : http://orcid.org/0000-0001-9801-2728

Abstract

In the transformer-and-switches executive structure (TSES) selected for the AC voltage stabilizer, a transforming element (TE), which has a sectioned winding, it is possible, if necessary, to change the array of transmission coefficients as necessary by means of a certain reconfiguration. The need for this may be due in particular to the variation of the boundaries of a given range of changes in the input voltage of the stabilizer. In the work, the influence of such variation on the installed capacity of the transforming element of the TSES is investigated and the possibility of increasing the efficiency of using TE while maintaining its thermal state within pre-determined (predetermined) limits is substantiated. This allows you to either choose a smaller size of the TE core or increase the allowable power of the load. References 15, figure 5, tables 3.

 

Key words: transformer-and-switches executive, discrete smart transformer, tap changing transformer, voltage stabilizer, voltage stabilizer, AC voltage converter, partitioned winding, thermal processes.

 

Received:    15.11.2018
Accepted:    14.12.2018
Published:  05.03.2019

 

References

1. Lypkivskyi K.O. Transformer-and-Switches Executive Structures of Alternating Current Voltage Converters. Kiev: Naukova Dumka, 1983. 216 p. (Rus)
2. Willems W., Vandoorn T.L., De Kooning, J.D., Vandevelde L. Development of a smart transformer to control the power exchange of a microgrid. 4th International Conf. Innovative Smart Grid Technologies Conference Europe (ISGT - Europe 2013), IEEE, 6-9 Oct. 2013, At Lyngby, Denmark. 2013. Pp. 1–5. DOI: http://dx.doi.org/ 10.1109/ISGTEurope.2013.6695300
3. Trentini, Andrea. The use of smart transformer in the presence of dispersed generation. Diss. Politecnico di Torino, Torino. 2018. 90 р.
4. Gehm, A.A., Quevedo, J.D.O., Mallmann, E.A., Fricke, L.A., Martins, M.L.D.S., & Beltrame, R.C. (2015). Development of a supervisory system for an intelligent transformer. In Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), 2015 IEEE 13th Brazilian. November, 2015. Рp. 1-6. DOI: http://dx.doi.org/10.1109/COBEP.2015.7420242.
5. Ratanapanachote, Somnida. Applications of an electronic transformer in a power distribution system. Diss. Texas A&M University, Texas. 2005. 92 р.
6. Huang M., Dong L., Zhang J., Wang J., Hao Z. Research on the Differential Protection Algorithm of Multi-Tap Special Transformer. Journal of Power and Energy Engineering. 2014. Vol. 2. No 09. Pp. 98–105. DOI: http://dx.doi.org/10.4236/jpee.2014.29014
7. Ram G., Prasanth V., Bauer P., Barthlein, E.M. Comparative analysis of on-load tap changing (OLTC) transformer topologies. 16th International Conf. Power Electronics and Motion Control Conference and Exposition (PEMC), IEEE, 21-24 Sep. 2014, Antalya, Turkey. 2014. Pp. 918–923. DOI: http://dx.doi.org/10.1109/EPEPEMC.2014.6980624
8. Electronic Tap Switching Voltage Regulator. URL: http://www.ustpower.com/comparing-automatic-voltage-regulation-technologies/avr-guide-electronic-tap-switching-voltage-regulator/ (accessed 05.12.2018).
9. Garcia, S.M., Rodriguez, J.C.C., Jardini, J.A., Lopez, J.V., Segura, A.I., & Cid, P.M.M. Feasibility of electronic tap-changing stabilizers for medium voltage lines. Precedents and new configurations. IEEE Transactions on Power Delivery. 2009. Vol. 24(3). Pp. 1490-1503. DOI: http://dx.doi.org/10.1109/TPWRD.2009.2021032
10. Lypkivskyi K.O., Mozharovskyi A.G. Determination of the power of transforming elements in the reconfiguration of the transformer-and-switches executive structures of AC voltage stabilizers. Analysis of influence factors. Tekhnichna Elektrodynamika. 2018. No 3. Pp. 48-55. (Ukr) DOI: https://doi.org/10.15407/techned2018.03.048
11. Lypkivskyi K.O., Mozharovskyi A.G. Simulation of the transformative elements with sectioning of the windings as part of AC voltage source converters. Tekhnichna Elektrodynamika. 2016. No 3. Pp. 39–44. (Ukr) DOI: https://doi.org/10.15407/techned2016.03.039
12. Podoltsev O.D., Kucheriava I.M. Multiphysics modeling in electrical engineering. Kyiv: Instititut elektrodinamiki Natsionalnoi Akademii Nauk Ukrainy, 2015. 305 p. (Rus)
13. Gurevych Y.I., Rybin Yu.L. Transient thermal processes in electric machine. Leningrad: Energoatomizdat, 1983. 216 p. (Rus)
14. Borisenko A.I., Kostikov О.N., Yakovlev А.I. Cooling of industrial electric machinery. Moskva: Energo-atomizdat, 1983. 296 p. (Rus)
15. Starodubtsev Yu.N. Theory and calculation of low-power transformers. Мoskva: IP RadioSoft, 2005. 320 p. (Rus)

PDF