PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2019.04.077


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 4, 2019 (July/August)
Pages 77 – 84


A. Safonyk*, O. Prysiazhniuk**
National University of Water and Environmental Engineering,
Soborna str., 11, Rivne, 33028, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : http://orcid.org/0000-0002-5020-9051
** ORCID ID : http://orcid.org/0000-0003-0003-3518



This paper presents an approach to modeling the electrocoagulation process based on the generalization of the equations of motion of an incompressible fluid between electrodes in nonisothermal conditions taking into account the ratio between the values of the parameters which characterize the domination of convective and mass-exchange components of the process over diffusion. An asymptotic approximation of solutions of corresponding boundary value problems is constructed. Based on the found solutions, it was conducted a computer simulation of the distribution of iron concentration inside the rector that allows predicting various hydrodynamic phenomena such as internal recirculation and dead zones that affects the formation of a coagulant. In this case study, were studied the effect of current strength on the concentration of the target component at the exit from the electrocoagulator using the developed mathematical model. The study tested the influence of the rate of heat formation from electrode heating on the efficiency of obtaining of coagulant. References 14, figures 5.

Key words: mathematical modeling, electrocoagulation, electroflotation, coagulant.

Received: 30.01.2019
Accepted: 25.03.2019
Published: 05.06.2019

1. Hakizimana J., Gourich B., Chafi M., Stiriba Y., Vial C., Drogui P., Naja J. Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination. 2017. Vol. 404. Pp. 1–21. DOI: https://doi.org/10.1016/j.desal.2016.10.011
2. Khandegar V., Saroha A.K. Electrocoagulation for the treatment of textile industry effluent - A Review Journal of Environmental Management. 2013. Vol. 128. Pp. 949–963. DOI: https://doi.org/10.1016/j.jenvman.2013.06.043
3. Safonyk A., Bomba A., Tarhonii I. Modeling and automation of the electrocoagulation process in water treatment. Advances in Intelligent Systems and Computing. 2019. Vol. 871. Pp. 451–463. DOI: https://doi.org/10.1007/978-3-030-01069-0_32
4. Versteeg H.K., Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. New York, USA: Pearson Education, 2007. 503 p.
5. Sandoval M., Fuentes R., Walsh F.C., Nava J.L. Ponce de Leon C. Computational fluid dynamics simulations of single-phase flow in a filter-press flow reactor having a stack of three cells. Electrochim Acta. 2016. Vol. 216. Pp. 490–498. DOI: https://doi.org/10.1016/j.electacta.2016.09.045
6. Enciso R., Padilla L., Ojeda C., Delgadillo J., Rodriguez I. Computational fluid dynamics characterization of a rotating cylinder electrochemical reactor using an RANS-RNG turbulence model International Journal of Electrochemical Science. 2012. Vol. 7. Pp. 12181–12192.
7. Kulinchenko V.R., Tkachenko S.I. Heat transfer with elements of mass transfer (theory and practice of the process). Kyiv: Feniks, 2014. 917 p. (Ukr)
8. Naje A.S., Chelliapan S., Zakaria Z., Ajeel M.A., Alaba P.A. A review of electrocoagulation technology for the treatment of textile wastewater. Reviews in Chemical Engineering. 2016. Vol. 33. Pp. 263–292. DOI: https://doi.org/10.1515/revce-2016-0019
9. Alam R., Shang J. Electrochemical model of electro-flotation. Journal of Water Process Engineering. 2016. Vol. 12. Pp. 78–88. DOI: https://doi.org/10.1016/j.jwpe.2016.06.009
10. Chen, X., Chen, G. Electroflotation in Electrochemistry for the Environmen. Springer Science+Business Media, LLC, 2010. Pp. 263-279. DOI: https://doi.org/10.1007/978-0-387-68318-8_11
11. Fukui, Y., Yuu, S. Collection of submicron particles in electro-flotation. Chemical Engineering Science. 1980. No 35(5). Pp. 1097–1105. DOI: https://doi.org/10.1016/0009-2509(80)85098-6
12. Bomba A., Kashtan S., Pryhornytskyi D., Yaroshchak S. Complex Analysis Methods. Rivne: NUVHP, 2013. 415 p. (Ukr)
13. Bomba A., Klymiuk Yu., Prysiazhniuk I., Prysiazhniuk O., Safonyk A. Mathematical modeling of wastewater treatment from multicomponent pollution by using microporous particles. Proc. 8th International Conference on Promoting the Application of Mathematics in Technical and Natural Sciences MiTaNS’16. Sofia, Bulgaria, July, 4–9, 2016. Pp. 1–11. DOI: https://doi.org/10.1063/1.4964966
14. Rodionov A., Klushin V., Torosheshnikov N. Environmental Engineering. Moskva: Khimiia, 1989. 512 p. (Rus)