PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2019.06.035


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Sciences of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 6, 2019 (November/December)
Pages 35 - 42

V.F. Bolyukh*, Yu.V. Kashanskyi**, I.S. Shchukin***
National Technical University Kharkiv Polytechnic Institute,
str. Kirpicheva, 2, Kharkiv, 61002, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : http://orcid.org/0000-0001-9115-7828
** ORCID ID : http://orcid.org/0000-0002-1532-9613
*** ORCID ID : http://orcid.org/0000-0001-7982-8633


The purpose of the article is to determine the influence of the geometrical parameters of the windings of the inductor and armature on the power and speed characteristics of linear pulsed electromechanical converters (LPEC) of induction and electrodynamic types. A chain mathematical model of LPEC, describing interconnected electrical, magnetic, mechanical and thermal processes, has been developed. The geometrical ratios of the windings of the inductor and the armature (axial height, the number of layers and turns of the copper bus) are established, at which the maximum power and speed characteristics of the specified converters are provided. The power and speed characteristics of an electrodynamic type converter are higher than those of an induction type converter, but structurally it is more complex. In the most efficient induction type converter, significant losses occur in the inductor winding, and the losses in the armature winding are insignificant, which causes a relatively low efficiency of 10.9%. In the most efficient electrodynamic type converter, the losses in the inductor winding are reduced, and in the armature winding they increase, which causes an increased efficiency of 20.0%. References 10, figures 4.

Key words: linear pulse electromechanical converter, converter of induction type, converter of electrodynamic type, comparative analysis.

Received: 04.06.2019
Accepted: 02.07.2019
Published: 25.10.2019


1. Bissal A., Magnusson J., Engdahl G. Comparison of two ultra-fast actuator concept. IEEE Transactions on Magnetics. 2012. Vol. 48. No 11. Pp. 3315-3318.  DOI: https://doi.org/10.1109/TMAG.2012.2198447
2. Bolyukh V.F., Kocherga A.I., Schukin I.S. Investigation of a linear pulse-induction electromechanical converter with different inductor power supply circuits. Electrical engineering & electromechanics. 2018. No 1. Pp. 21-28.  DOI: https://doi.org/10.20998/2074-272X.2018.1.03
3. Bolyukh V.F., Oleksenko S.V., Shchukin I.S. Comparative analysis of linear pulse electromechanical t converters of electromagnetic and induction types. Tekhnichna Elektrodynamika. 2016. No 5. Pp. 46-48. (Rus)  DOI: https://doi.org/10.15407/techned2016.05.046
4. Bolyukh V.F., Shchukin I.S. The thermal state of an electromechanical induction converter with impact action in the cyclic operation mode. Russian electrical engineering. 2012. Vol. 83. No 10. Pp. 571-576. DOI: https://doi.org/10.3103/S1068371212100045
5. Ivashin V.V., Penchev V.P. Features of the dynamics of work and energy diagrams of a pulsed electromagnetic drive with parallel and series connection of the excitation windings. Elektrotekhnika. 2013. No 6. Pp. 42-46. (Rus)  DOI: https://doi.org/10.3103/S1068371213060059
6. Kondratenko I.P., Zhiltsov A.V., Pashchin M.O., Vasyuk V.V. The choice of parameters of an electromechanical converter of an induction type for electrodynamic treatment of welded joints. Tekhnichna Elektrodynamika. 2017. No 5. Pp. 83-88. (Ukr)  DOI: https://doi.org/10.15407/techned2017.05.083
7. Lim D.K., Woo D.K., Kim I.W., Shin D.K., Ro J.S., Chung T.K., Jung H.K. Characteristic analysis and design of a Thomson coil actuator using an analytic method and a numerical method. IEEE Transactions on Magnetics. 2013. Vol. 49. No 12. Pp. 5749-5755.  DOI: https://doi.org/10.1109/TMAG.2013.2272561
8. Puumala V., Kettunen L. Electromagnetic design of ultrafast electromechanical switches. IEEE Transactions on Power Delivery. 2015. Vol. 30. No 3. Pp. 1104-1109.  DOI: https://doi.org/10.1109/TPWRD.2014.2362996
9. Suchkov G.M., Taranenko Y.K., Khomyak Y.V. A non-contact multifunctional ultrasonic transducer for measure-ments and non-destructive testing. Measurement Techniques. 2016. Vol. 59. No 9. Pp. 990-993.  DOI: https://doi.org/10.1007/s11018-016-1081-3
10. Zhang M., Wang Y., Li P., Wen H. Comparative studies on two electromagnetic repulsion mechanisms for high-speed vacuum switch. IET Electric Power Applications. 2018. Vol. 12. No 2. Pp. 247-253.  DOI: https://doi.org/10.1049/iet-epa.2017.0396