PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2020.01.078

ANALYSIS OF THE IMPEDANCE MODEL OF A TWO-ELECTRODE CONTACT CONDUKTOMETRIC CELL

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 1, 2020 (January/February)
Pages 78 - 86

Authors
O.O. Mikhal, D.V. Meleshchuk
1- Institute of Electrodynamics of the National Academy of Sciences of Ukraine,
pr. Peremohy, 56, Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript , Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : https://orcid.org/0000-0001-7816-8880
** ORCID ID : https://orcid.org/0000-0003-2591-1583

Abstract

The results of the study of the electric model of a two-electrode conductometric cell when measuring with alternating current are presented. The proposed model is based on the series connection of two impedances, which describe the near-electrode processes and processes in the volume of the test solution. It allows you to separately evaluate the informative and non-informative parameters of equivalent replacement schemes. The results of a theoretical study of the frequency properties of the near-electrode and volume impedances are presented. Based on them, simplifications of the equivalent cell impedance substitution scheme for the frequency-measuring subbands are proposed. The results of the study of the components of the cell impedance are given. A number of parameters have been determined that allow an experimental assessment of the legitimacy of the application of the electric cell model. References 30, figures 5.

Key words: conductometry, cell, electrical model, impedance, electrolytic conductivity.

Received: 16.05.2019
Accepted: 14.11.2019
Published: 16.01.2020

 

References
1. Grilikhes M.S., Filanovskiy B.K. Contact conductometry. Leningrad: Khimiia, 1980. 176 p. (Rus)
2. Lopatin B.A. Theoretical bases of electrochemical methods of analysis. Moskva: Vyshcha shkola, 1975. 295 p. (Rus)
3. Grafov B.M., Ukshe Ye.A. Electrochemical AC circuits. Moskva: Nauka, 1973. 128 p. (Rus)
4. Andreyev V.S. Conductometric methods and devices in biology and medicine. Moskva: Meditsina, 1973. 335 p. (Rus)
5. Bard Allen J., Faulkner Larry R. Electrochemical Methods: Fundamentals and Applications. Wiley, 2000. 864 p.
6. Bottauscio O., Capra P., Durbiano F., Manzin A. Modeling of Cells for Electrolytic Conductivity Measurements. IEEE Transactions on magnetics. 2006. Vol. 42. No 4. Pp. 1423-1426. DOI: https://doi.org/10.1109/TMAG.2006.871443
7. Thirstrup C., Snedden A., Deleebeeck L. Addressing the challenges of traceable electrolytic conductivity measurements in water. Measurement Science and Technology. 2017. Vol. 28. No 12. 9 p. DOI: https://doi.org/10.1088/1361-6501/aa875d
8. Dzyadevich S.V., Soldatkin O.P. Scientific, that technology_ arranges the ambush of communication of miniature electric electric biosensors. Kyiv: Naukova dumka, 2006. 255 p. (Ukr)
9. Kneller V.Yu., Borovskikh L.P. Determination of parameters of multi-element two-terminal networks. Moskva: Energoatomizdat, 1986. 144 p. (Rus)
10. Seitz S., Manzin A., Jensen H.D., Jakobsen P.T., Spitzer P. Traceability of electrolytic conductivity measurements to the International System of Units in the sub mSm-1 region and review of models of electrolytic conductivity cells. Electrochimica Acta. 2010. Vol. 55. No 22. Pp. 6323-6331. DOI: https://doi.org/10.1016/j.electacta.2010.06.008
11. Manzin A., Bottauscio O., Ansalone D.P. Application of the thin-shell formulation to the numerical modeling of Stern layer in biomolecular electrostatics. Journal of Computational Chemistry. 2011. Vol. 32. No 14. Pp. 3105–3113. DOI: https://doi.org/10.1002/jcc.21896
12. Barbero G., Becchi M., Freire F.C.M. Contribution of the electrode-electrolyte interface to the impedance of an electrolytic cell. Journal of Applied Physics. 2008. No 104. Pp. 114111 - 114111-7. DOI: https://doi.org/10.1063/1.3033392
13. Hubálek J. Iterative Precise Conductivity Measurement with IDEs. Sensors. 2015. Vol. 15 No 5. Pp. 12080-12091. DOI: https://doi.org/10.3390/s150512080
14. Brug G.J., van den Eeden A.L.G., Sluyters-Rehbach M., Sluyters J.H. The analysis of electrode impedances complicated by the presence of a constant phase element. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1984. Vol. 176. No 1-2. Pp. 275-295. DOI: https://doi.org/10.1016/S0022-0728(84)80324-1
15. Seitz S., Spitzer P., Jensen H.D., Orru E. Durbiano F. Electrolytic conductivity as a quality indicator for bioethanol. Acta Imeko. 2014. Vol. 3. No 3. Pp. 38-42. DOI: https://doi.org/10.21014/acta_imeko.v3i3.125
16. Rodríguez-Lòpez A., Reyes-Del Valle A., Juárez-Garcia J.M., Monroy-Mendoza M., Avila-Salas M.J., Ortíz-Aparicio J.L., Antaño-Lòpez R. Electrochemical characterization of a primary electrolytic conductivity cell at CENAM. Accreditation and Quality Assurance. 2013. Vol. 18. No 5. Pp. 383-389. DOI: https://doi.org/10.1007/s00769-013-1001-z
17. Robinson C., Stoks S. Electrolyte solutions. Moskva: Izdatelstvo inostrannoi literatury, 1959. 647 p. (Rus)
18. Czichos H., Saito T., Smith L. Springer Handbook of Metrology & Testing. London: Springer, 2011. 1500 p.  DOI: https://doi.org/10.1007/978-3-642-16641-9
19. Mariassy M., Pratt K.W., Spitzer P. Major applications of electrochemical techniques at national metrology institutes. Metrologia. 2009. No 46. Pp. 199-213. DOI: https://doi.org/10.1088/0026-1394/46/3/007
20. Pervukhin B.S., Krivobokov D.Ye., Suvorova N.V. Determination of parameters of contact conductometric cells. Polzunovskii almanakh. 2014. No 1. Pp. 63-65. (Rus)
21. Langereis G.R. An integrated sensor system for monitoring washing processes. Enschede: Universiteit Twente, 1999. 239 p.
22. Xiaoping S., Spitzer P., Sudmeier U. Novel method for bulk resistance evaluation in conductivity measurement for high-purity water. Accreditation and Quality Assurance. 2007. Vol. 12. No 7. Pp. 351-355. DOI: https://doi.org/10.1007/s00769-007-0258-5
23. Wang J. Analytical electrochemistry. New York: Wiley-VCH, 2001. 222 p.
24. Sheludko A.D. Colloid chemistry. Moskva: Mir, 1984. 320 p. (Rus)
25. Brinkmann F., Ebbe Dam N., Deák E., Durbiano F., Ferrara E., Fükö J., Jensen H.D., Máriássy M., Shreiner R.H., Spitzer P., Sudmeier U., Surdu M., Vyskocil L. General paper: Primary methods for the measurement of electrolytic conductivity. Accred Qual Assur. 2003. No 8. Pp. 346 - 353. DOI: https://doi.org/10.1007/s00769-003-0645-5
26. Moron Z., Pomiary przewodnosci elektrycznej cieczy przy malych czestotliwosciach. Politechnika Wroclawska, 2003. 163 p.
27. Mikhal A.A., Glukhenkyi A.I., Warsza Z.L. Factors of AC Field Inhomogeneity in Impedance Measurement of Cylindrical Conductors. Recent Advances in Systems, Control and Information Technology, Advances in Intelligent Systems and Computing 543. Springer, 2017. Pp. 535-545.  DOI: https://doi.org/10.1007/978-3-319-48923-0_57
28. Glukhenkiy A.I., Mikhal A.A. Estimated estimate of the impedance components of a cylindrical conductor when measured on an alternating current. Tekhnichna Elektrodynamika. 2010. No 1. Pp. 15-22. (Rus)
29. Iossel' Yu.Ya., Kochanov E.S., Strunskiy M.G. Calculation of electrical capacitance. Leningrad: Energoizdat, 1981. 288 p. (Rus)
30. Mikhal A.A., Meleshchuk D.V., Grebenkov I.N. Experimental studies of the impedance of the Pt/H2O and Pt/Cl conductance interface at frequencies of 10 kHz - 1 MHz. Tekhnichna Elektrodynamika. 2016. No 6. Pp. 76-82. (Rus) DOI: https://doi.org/10.15407/techned2016.06.076

PDF

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.