PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2020.02.056

INFLUENCE OF PULSATIONS OF THE FLEXIBLE DC MOTOR ON THE MANAGEMENT PROCESS OF STARTING THE GAS TURBINE MOTOR HELICOPTER

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 2, 2020 (March/April)
Pages 56 - 66

Authors
V. Bashinskyi*, O. Shapovalоv**, A. Denisov***, O. Bursala****, A. Bursala*****
State Scientific Research Institute for Testing and Certification of Arms and Military Equipment,
Striletska st, 1, Chernigiv, 14033, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

* ORCID ID : https://orcid.org/0000-0003-0966-5714
** ORCID ID : https://orcid.org/0000-0002-2809-7444
*** ORCID ID : https://orcid.org/0000-0001-8357-2378
**** ORCID ID : https://orcid.org/0000-0002-1829-1980
***** ORCID ID : https://orcid.org/0000-0002-8523-8987

Abstract

The ripple analysis of the input current of the commutator of the brushless DC motor (BLDC) is performed and their influence on the gain and sensitivity of the control system is established. Methods are proposed for reducing the influence of pulsations on the dynamics of processes in a current loop. Discrete transfer functions of a closed current loop are obtained with and without consideration of the influence of counter-EMF motor, which allowed us to propose a method of stabilizing the rate of increase of the input current of the switch. The implementation of this method allows to increase the working life of the battery. The areas of subharmonic stability of the gas turbine engine launch system (GTE) of the helicopter with BLDC were established. References 8, figures 4, table 1.

Key words: brushless DC motor, ripple, discreteness, modified Z-transform, current loop, stability.

Received: 10.07.2019
Accepted: 05.02.2020
Published: 26.02.2020

 

References
1. Denysov A.Y., Bursala E.A., Bashynskyi K.V. Improving onboard power supply systems and launching gas turbine helicopter engines. Systemy ozbroiennia i viiskovoi tekhniky. 2016. No 4 (48). Pp. 98-103. (Rus)
2. Levyn A.V., Alekseev Y.Y., Kharytonov S.A., Kovalev L.K. Electric aircraft: from idea to implementation. Moskva: Mashynostroenie, 2010. 288 p. (Rus)
3. Ovchynnykov Y.E. Valve electric motors and electric drive based on them. Sankt-Peterburh: Korona-Vek, 2012. 336 p. (Rus)
4. Singh B., Singh S. Singl-phase Power Factor Controller Topologies for Permanent Magnet Brushless DC Motor Drives. IET Power Electronic. 2010. Vol. 3. No 2. Pp. 147-175. DOI: http://dx.doi.org/10.1049/iet-pel.2008.0313
5. Antonov A.E., Akynyn K.P., Kyreev V.T. Features of building an electromechanical orientation system of a nanosatellite based on a contactless magnetoelectric engine. Tekhnichna elektrodynamika. 2017. No 4. Pp. 36-40. (Rus) DOI: https://doi.org/10.15407/techned2017.04.036
6. Akynyn K.P. Relay vector control system of permanent magnet contactless motors with a current sensor in the DC link. Tekhnichna elektrodynamika. 2014. No 3. Pp. 52-55. (Rus)
7. Denysov Yu.O. Transformation technology systems. Chernihiv: Chernihivskyi Natsionalnyi Tekhnologichnyi Universytet, 2014. 170 p. (Ukr)
8. Lebedev E.D., Neimark V.E., Pistrak M.Ia., Slezhanovskii O.V. Control valve DC electric drives. Moskva: Energy, 1970. 232 p. (Rus)

 

PDF

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.