PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2020.03.052

POWER INDUSTRY OF UKRAINE AND REALITIES OF THE GLOBAL WARMING

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 3, 2020 (May/June)
Pages 52 - 61

Authors
O.V. Kyrylenko1*, B.I. Basok2**, Ye.T. Baseyev2***, I.V. Blinov1****
1- Institute of Electrodynamics of the National Academy of Sciences of Ukraine,
56 Peremohy Ave., Kyiv, 03057, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2- The Institute of Engineering Thermophysics of the NAS of Ukraine,
Bulakhovskoho, 2, Kyiv, 03164, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : https://orcid.org/0000-0003-3610-7670
** ORCID ID : https://orcid.org/0000-0002-8935-4248
*** ORCID ID : https://orcid.org/0000-0003-4292-1505
**** ORCID ID : https://orcid.org/0000-0001-8010-5301

Abstract

The results of studies of the evolution of global energy consumption are highlighted, anthropogenic and solar-terrestrial factors of influence on global warming are reviewed. Since the mid-twentieth century, the trend of increasing global surface temperature, one of the indicators of the climate system of our planet, has been investigated. An explanation of the greenhouse effect enhancement is given, as a result of an increase in the concentration of greenhouse gases in the Earth's atmosphere. Along with the anthropogenic concept of global warming, a natural concept is also considered, in which it is believed that the determining factors of increasing surface temperature are natural, associated with cosmogenic cyclical processes, with solar-terrestrial interaction (Earth's rotation around the Sun, precession of the Earth's rotation axis, solar activity cycles and etc.). It is shown that there are approaches that interchange the causes and effects of warming, namely: changes in the atmospheric concentration of carbon dioxide - this is a consequence of global temperature changes on the planet, and not their cause. The warming of the oceans leads to a decrease in the solubility of CO2 in water and the release of its excess into the atmosphere. The author’s vision of trends forecasts the development of the electric power industry and renewable energy sources in Ukraine in the coming decades are given. In particular, a list of organizational, technological, and scientific-innovative problems associated with the unregulated use of renewable energy sources have been proposed. References 39, figures 3.

Key words: global warming, climate change, greenhouse gas, energy efficiency, global energy balance, renewable energy.

Received: 25.03.2020
Accepted: 17.04.2020
Published: 05.05.2020

 

References
1. Review of analytical work of international energy organizations on the state and scenarios of development of the world energy sector with the forecast of investment in energy efficiency. Kyiv: NEC Ukrenergo, 2018. 95 p. URL: https://ua.energy/wp-content/uploads/2018/06/2.-rozvyt_svit_energet_sfery.pdf (accessed: 05.03.2019). (Ukr)
2. Global warming of 1.5 °C. IPCC Special report. 2018. URL: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf. (accessed: 05.03.2019).
3. Sorokhtin O. G. The evolution of the Earth’s climate and the origin of the ice eras. Vestnik RAN. 2006. Vol. 76. No 8. Pp. 699-706. (Rus)
4. Monin A.S., Shishkov Yu.A. Climate as a problem of physics. Uspekhi phizicheskikh nauk. 2000. Vol. 170. No 4. Pp. 419-445. (Rus) DOI: https://doi.org/10.3367/UFNr.0170.200004d.0419
5. Voloshchuk V., Srypnyk M. Global greenhouse effect and climatic conditions of Ukraine. Visnyk AS Ukrainy. 1993. No 9. Pp. 43-46. (Ukr)
6. Boychenko S. G. Semiempirical models and scenarios of global and regional climate changes. Kyiv: Naukova dumka, 2008. 309 p. (Ukr)
7. Voloshchuk V. M., Boychenko S. G., Stepanenko S. M., Bortnik S. Yu., Shishchenko P. G. Global warming and climate in Ukraine: Regional environmental and socio-economic aspects. Kyiv: PPC Kiev University, 2002. 116 p. (Ukr)
8. Shevchuk V.Ya., Malysheva N.R., Kovalchuk T.T., Mansurova I.G.. Energy efficiency and climate change policy. Kyiv: Comprint CPU. 2014. 218 p. (Ukr)
9. Lipinsky V.M. Global climate change and its recall in Ukraine’s climate dynamics. International conference. Investments and Climate Change: Opportunities for Ukraine. Kyiv, 10-12 July, 2002. Pp. 177-185. (Ukr)
10. Increasing resilience to climate change in the agricultural sector of the South of Ukraine. Szentendre, Hungary. Regional environmental center. October 2015. 73 p. (Ukr)
11. Organizational and economic mechanisms for modernization of the heat power industry of Ukraine. Kyiv: Publishing House Kalita, 2015. 338 p. (Ukr)
12. Paton B.E., Dolinsky A.A., Heyets V.M. Kukhar V.P., Basok B.I., Bazeyev E.T., Podolets R.Z. Priorities of the national heat supply strategy of settlements of Ukraine. Visnyk NAS of Ukraine. 2014. No 9. Pp. 29-47. (Ukr) DOI: https://doi.org/10.15407/visn2014.09.029
13. Basok B.I., Novoseltsev A.V., Dubovsky S.V., Bazeyev E.T. Modernization of heat supply systems of settlements of Ukraine (thermophysics, energy efficiency, energy economy, ecology). Kyiv: Publishing House Kalita, 2018. 406 p. (Ukr)
14. Karp I.N., Nikitin E.E. Ways to solve the problems of municipal energy. Zhiliscthno-kommunalnoe khozyajstvo Ukrainy. 2011. No 6. Pp. 16-22. (Rus)
15. Basok B.I., Bazeyev E.T. Innovative technologies for buildings - a priority of improving energy efficiency in Ukraine. Promyshlennaya teplotekhnika. 2017. Vol. 39. No 4. Pp. 61-67. (Rus) DOI: https://doi.org/10.31472/ihe.4.2017.09
16. Sigal I.Ya., Smikhula A.V., Marasin A.V., Lavrentsov E.M. Reducing nitrogen oxide emissions to European standards and increasing the heat and energy performance of existing boilers. Problems of ecology and operation of energy facilities. Kyiv: IPTS ALKON NAS of Ukraine, 2017. 222 p. (Rus)
17. Sigal A.I., Paderno D.Yu., Pavlyuk N.Yu., Safyants A.S., Bykoriz E.I., Plashikhin S.V. Reducing natural gas consumption and reducing emissions of harmful substances from combustion products in municipal heating. Teplophizyka ta teploenergetyka. 2019. Vol. 41. No 2. Pp. 54-63. (Ukr) DOI: https://doi.org/10.31472/ttpe.2.2019.8
18. Kobzar S.G., Khalatov A.A. Study of the efficiency of reducing nitrogen oxides when using the advanced method of three-stage coal combustion using coal as a post-combustion fuel. Promyslova teplotekhnika. 2017. Vol. 39. No 5. Pp. 91-96. (Ukr) DOI: https://doi.org/10.31472/ihe.5.2017.15
19. Basok B.I., Basok B.I., Bazeyev E.T., Pirozhenko I.A. Municipal power system in Ukraine: state, problems and ways of modernization. Kyiv: Naukova dumka, 2007. 827 p. (Ukr)
20. Matsevity Yu.M., Shubenko A.L., Kanilo P.M., Solovey V.V. Energy, ecology and global warming. Dopovidi NAS of Ukraine. 2016. No 12. Pp. 102-108. (Rus) DOI: https://doi.org/10.15407/dopovidi2016.12.102
21. Soroka B.S. Wet burning is a modern direction of environmentally friendly burning of fuel and a solution to the problem of sustainable development of energy. Alternatyvnaya energetika i ekologiya. 2018. No 25-30 (273-278). Pp. 97-117. (Rus) DOI: https://doi.org/10.15518/isjaee.2018.25-30.096-117
22. Volchin I.A., Gaponich L.S. Carbon dioxide emissions from Ukrainian coal-fired thermal power plants Naukovi pratsi Natsionalnoho universytetu kharchovykh tekhnolohiy. 2018. Vol. 24. No 6. Pp. 131-142. (Ukr)
23. Shkitsa L.E., Yatsyshyn T.M., Popov A.A., Artemchuk V.A. The development of mathematical tools for ecological safe of atmosfere on the drilling well area. Neftyanoe khozyaystvo. 2013. No 11. Pp. 136-140.
24. Popov O., Іatsyshyn A., Kovach V., Artemchuk V., Taraduda D., Sobyna V., Sokolov D., Dement M., Yatsyshyn T., Matvieieva I. Analysis of possible causes of NPP emergencies to minimize risk of their occurrence. Nuclear and radiation safety. 2019. No 1 (81). Pp. 75-80. DOI: https://doi.org/10.32918/nrs.2019.1(81).13
25. Kyrylenko O.V., Blinov I.V., Parus E.V., Ivanov G.A. Simulation model of the day-ahead electricity market with implicit consideration of network limitations of energy systems. Tekhnichna elektrodynamika. 2019. No 5. Pp. 60-67. (Ukr) DOI: https://doi.org/10.15407/techned2019.05.060
26. Ivanov H., Blinov I. Parus Ye. Simulation Model of New Electricity Market in Ukraine. IEEE 6th International Conference on Energy Smart Systems (ESS): Kyiv, 17-19 April 2019, Pp. 339-34. DOI: https://doi.org/10.1109/ESS.2019.8764184
27. Zhuikov V., Pichkalov I., Boyko I., Blinov I. Price formation in the energy markets of Ukraine. IEEE 35th International Conference on Electronics and Nanotechnology (ELNANO-2015). Kyiv, 21-24 April 2015. Pp. 553-556. DOI: https://doi.org/10.1109/ELNANO.2015.7146953
28. Renewable power generation costs in 2018. International Renewable Energy Agency (IRENA). 2019. C. 88. URL: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf (accessed: 05.03.2019).
29. Baziuk T.M., Blinov I.V., Butkevych O.F., Honcharenko I.S., Denysiuk S.P., Zhuikov V.Ia., Kyrylenko O.V., Lukianenko L.M., Mykolaiets D.A., Osypenko K.S., Pavlovskyi V.V., Rybina O.B., Steliuk A.O., Tankevych S.Ie., Trach I.V. Intelligent power systems: elements and modes. Kyiv: Institute of Electrodynamics of the NAS of Ukraine, 2016. 400 p. (Ukr)
30. Blinov I.V. New approach to congestion management for decentralized market coupling using net export curves. CIGRE Session 46. Session papers and proceedings. Paris. 2016. No C5-105. 7 p. DOI: https://doi.org/10.1109/MPE.2016.2523381
31. Blinov I.V., Parus E.V. Congestion management and minimization of price difference between coupled electricity markets. Tekhnichna elektrodynamika. 2015. No 5. Pp. 81-88. (Ukr)
32. Blinov I.V., Miroshnyk V.O., Shimanyuk P.V. Short-term interval forecast of the total supply of electricity by producers from renewable energy sources. Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. 2019. Issue 54. Pp. 5-12. (Ukr) DOI: https://doi.org/10.15407/publishing2019.54.005
33. Butkevich O.F., Yuneeva N.T., Gureeva T.M. On the issue of placement of energy storage in the Ukrainian UES. Tekhnichna elektrodynamika. 2019. No 6. Pp. 59-64. (Ukr) DOI: https://doi.org/10.15407/techned2019.06.059
34. Klimenko V.V. The experience of genetic predictions of the world energy: can we foresee the distant future. Doklady Akademii nauk. Energetika. 2014. Vol. 458. No 4. Pp. 415-418. (Rus)
35. New Energy Strategy of Ukraine until 2035: Security, Energy Efficiency, Competitiveness URL: http://mpe.kmu.gov.ua/ minugol/control/uk/doccatalog/list?currDir=50358 (Ukr).
36. Kulyk M.M., Horbulin V.P., Kyrylenko O.V. Conceptual approaches to the development of energy of Ukraine (analytical materials). Kyiv: Institute of General Energy of the National Academy of Sciences of Ukraine, 2017. 78 p. (Ukr).
37. Mironov N. Measures and challenges of global energy security. Mirovaya energetika. 2007. No 4. Pp. 50-51. (Rus)
38. WMO Provisional Statement of the State of the Climate 2019. URL: https://library.wmo.int/doc_num.php?explnum_id=10108 (Accessed: 05.03.2019).
39. Geyets, V.M., Kyrylenko, O.V., Basok, B.I., Baseyev Ye.T. Energy Strategy: Projections (Review). Sci. innov. 2020. Vol. 16. № 1(91). P. 3-14. (Ukr) DOI: https://doi.org/10.15407/scine15.05.003.

 

PDF

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.