PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2020.05.084

DETERMINATION OF CONTROL SYSTEM INFORMATION COORDINATES OF HIGH VOLTAGE INSTALLATIONS FOR ELECTRODISCHARGE TREATMENT OF CARBON-CONTAINING GASES

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue No 5, 2020 (September/October)
Pages 84 - 87

Authors
D. Vinnychenko1*, I. Vinnychenko2**
1 - Institute of Pulse Processes and Technologies National Academy of Science of Ukraine,
Bohoyavlensky Avenue, 43a, Mykolayiv, 54018, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2 - Admiral Makarov National University of Shipbuilding,
Heroes of Ukraine Avenue, 9, Mykolayiv, 54025, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID : https://orcid.org/0000-0002-8894-860X
** ORCID ID : https://orcid.org/0000-0002-3768-1060

Abstract

The information coordinates of the control system for the automatic control of the output characteristics of the high-voltage discharge currents former of the high-voltage installations of electrodischarge treatment of carbon-containing gases are determined. The peculiarities of the work that are inherent in high-voltage electric discharge installations are analyzed and it is shown that the information coordinate of the control system is the input power of the power source of the installations for the discharge of carbon-containing gases, and with a stable input voltage, the current value at the input. This allows to fast determination of the current value of the length of the electrode gap to maintain the mode of operation of high-voltage installations for the discharge of carbon-containing gases with maximum productivity at minimum specific energy consumption per unit mass of the product. References 9.

Key words: information coordinate, power, operating current, interelectrode gap, operating mode, productivity, specific energy consumption.

Received: 28.02.2020
Accepted: 19.04.2020
Published: 25.08.2020

 

References
1. Vinnychenko D.V. Influence of electrical parameters of high-voltage electrical discharge installations of nanocarbon synthesis on their productivity and specific energy consumption. Tekhnichna elektrodynamika. 2016.No 4. Pp. 95-97. (Ukr.). DOI: https://doi.org/10.15407/techned2016.04.095
2. Shcherba A.A., Suprunovskaya N.Y. Laws of increasing the rate of rise of discharge currents in the load while limiting their maximum values. Tekhnichna elektrodynamika. 2012. No 5. Pp. 3-9. (Rus)
3. Vovchenko A.Y., Tertylov R.V. Synthesis of parametric nonlinear capacitive energy sources for the discharge-pulse technology. Zbirnyk naukovykh pratsi Natsionalnoho universytetu korablebuduvannya. 2010. No 4. Pp. 118-124. (Rus)
4. Vinnychenko D.V., Nazarova N.S. Electrotechnical system with frequency-parametric regulation of stabilized discharge current in carbon-containing gases. Tekhnichna elektrodynamika. 2019. No 1. Pp. 25-28. DOI: https://doi.org/10.15407/techned2019.01.025. (Ukr.).
5. Kozyrev S. Control System of Discharge-Pulse Installation with Elements of Artificial Intelligence. IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). 2019, Lviv, Ukraine. Pp. 515-520. DOI: https://doi.org/10.1109/UKRCON.2019.8879816
6. Vinnychenko D.V. Determination of the optimal characteristics of high voltage electric-discharge system for implementing electropulse synthesis technology of nanocarbon. Tekhnichna Elektrodynamika. 2014. No 4. Pp. 129-131. (Ukr)
7. Shcherba A.A., Suprunovska N.I. Study features of transients in the circuits of semiconductor discharge pulses generators with nonlinear electro-Spark load. IEEE International Conference on Intelligent Energy and Power Systems (IEPS 2014), Kyiv, Ukraine. 2014. Pp. 50-54. DOI: https://doi.org/10.1109/IEPS.2014.6874200
8. Shcherba A.A., Podoltsev A.D., Kucheriava I.M., Ushakov V.I. Computer modeling of electrothermal processes and thermomechanical stress at induction heating of moving copper ingots. Tekhnichna Elektrodynamika. 2013. No 2. Pp. 10-18. (Rus)
9. Shcherba A.A., Kosenkov V.M., Bychkov V.M. Mathematical closed model of electric and magnetic fields in the discharge chamber of an electrohydraulic installation. Surface Engineering and Applied Electrochemistry. 2015. Vol. 51 (6). Pp. 581-588. DOI: https://doi.org/10.3103/S1068375515060113

 

PDF

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.