PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2016.01.067

MULTIDIMENSIONAL OPTIMIZATION WITH A GIVEN DISTRIBUTION OF RANKED VARIABLES FOR REDUCTIONG ELECTRICAL LOSSES IN THE ELECTRICAL NETWORK

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue № 1, 2016 (January/February)
Pages 67 – 72

 

Authors
Trach І., Sevastjuk I.
Institute of Electrodynamics National Academy of Science of Ukraine,
pr. Peremohy, 56, Kyiv-57, 03680, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

 

Abstract

For multi-criteria multidimensional optimization with a given distribution of ranked variables applied to reduce the loss in the electrical network. Optimization of losses was carried out by determining the placement of capacitor banks. The method of consecutive concessions was proposed. As the first criterion used by the active losses. A formation of the solution set by first criterion was performed using modernized PSO-method. The second criterion is the ranked parametric distribution of the variables of the vector belongs to a class of non-linear exponential regression equation. The estimation of the parameters of the exponential regression equation for the ranked variables consisting of capacitors conductivity. The statistical reliability of the regression model is established. It was found that it is possible to install capacitors in the electrical network, for which the distribution of the ranked variables vector conductivities refer to a class of nonlinear exponential equation. References 12, figures 2, table 1.

 

Key words: multi-criteria multidimensional optimization, method of consecutive concessions, distribution of ranked variables, loss of the electrical grid.

 

Received:    20.04.2015
Accepted:    08.12.2015
Published:   29.01.2016

 

References

1. Gnatyuk V.I. The Law of Technocoenosis Optimum Construction. Vol. 29. Coenosis Research.  Moskva: Tomskii gosudarstvennyi universitet. Tsentr Systemnykh Issledovanii, 2005.  384 p. (Rus)
2. Zinko P.М. Mathematical methods and numerical algorithms for system analysis.  Кyiv: Kyivskyi Natsionalnyi Universytet imeni Tarasa Shevchenko, 2006.  243 p. (Ukr)
3. Iglin S.P. Mathematical calculations on base of MATLAB.  Sankt-Peterburg: BHV- Peterburg, 2005.  640 p. (Rus)
4. Khalil T., Horpinich A. Selection of Optimal Conductors Sections and Capacitors Placement in Radial Distribution Systems by Selective Particle Swarm Optimization. Naukovi Pratsi Donetskoho Natsionalnoho Tekhnichnoho Universytetu.  2011.  Iss. 11(186).  P. 406–413. (Rus)
5. Aman M., Jasmon G., Bakar A., Mokhlis H., Karimi M. Optimum shunt capacitor placement in distribution system-A review and comparative study. Renewable and Sustainable Energy Reviews.  2014.  No 30.  P. 429–439. DOI:  https://doi.org/10.1016/j.rser.2013.10.002
6. Eajal A.A., El-Havary M.E. Optimal Capacitor Placement and Sizing in Distorted Radial Distribution Systems. Part II: Problem Formulation and Solution Method. 14-th IEEE Internat. Conference on Harmonics and Quality of Power (ICHQP) Bergamo, Italy, 2010.  P. 1–6.
7. Chatterjee S., Hadi A.S. Influential Observations, High Leverage Points, and Outliers in Linear Regression. Statistical Science.  1986.  Vol. 1.  P. 379–416. DOI:  https://doi.org/10.1214/ss/1177013622
8. Injeti S., Thunuguntla V., Shareef M. Optimal allocation of capacitor banks in radial distribution systems for minimization of real power loss and maximization of network savings using bio-inspired optimization algorithms. International Journal of Electrical Power & Energy Systems.  2015.  Vol. 69.  P. 441–455. DOI: https://doi.org/10.1016/j.ijepes.2015.01.040
9. NIST/SEMATECH e-Handbook of Statistical Methods. – NIST. U.S. Department of Commerce.  2013. Available at: http://www.itl.nist.gov/div898/handbook/eda/section3/eda3673.htm
10. Shi Y., Eberhart. A modified particle swarm optimizer. The 1998 IEEE International Conference on Evolutionary Computation Proceedings, 1998.  Р. 69–73.
11. Trach I., Zubiuk Yu. A combined approach to multi-objective optimization of capacitor placement in radial distribution networks.  3rd Internat. Conf. on Electric Power and Energy. Conversion Systems (EPECS 2013). Available at: http://www.researchgate.net/publication/261312111.pdf
12. Vahid M., Hossein A.A., Kazem M. Maximum loss reduction applying combination of optimal conductor selection and capacitor placement in distribution systems with nonlinear loads.  UPEC 2008. 43rd International.  2008.  P. 1.

 

PDF