PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2016.02.003

GLOBAL ELECTRIC RLC –CIRCUIT OF A SYSTEM "THE EARTH'S CRUST – ATMOSPHERE – IONOSPHERE" AND ITS RESONANCE PROPERTIES

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue № 2, 2016 (March/April)
Pages 3 – 10

 

Author
А. Podoltsev
Institute of Electrodynamics National Academy of Science of Ukraine,
Pr. Peremogy, 56, Kyiv-57, 03680, Ukraine.
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

 

Abstract

The global electric RLC-circuit of the Earth is proposed to simulate the coupled electromagnetic processes of extremely low frequency in the Earth's crust, atmosphere and ionosphere. For its computer implementation, taking into account the spatial structure of the spherical elements of the system, the software Matlab/Simulink is used. As shown by study, the circuit is characterized by resonances within frequency range of 0,8–4 Hz, and the first resonance frequency is equal 0,81 Hz. The response of this RLC-circuit to external action harmonic, step function and pulsed voltage sources is examined and significant local overvoltage of the circuit elements under external harmonic action at resonance frequency is revealed. References 11, figures 7, table 1.

 

Key words: global atmospheric electric circuit, geomagnetic induced currents, resonance, local overvoltage, power system.

 

Received:     02.12.2015
Accepted:     18.12.2015
Published:   18.03.2016

 

References

1. King Р., Smit G. Antennas in material mediums.  Moskva: Mir, 1984.  822 p. (Rus)
2. Кyrylenko A.V., Кyrik V.V., Podoltsev А.D. Geomagnetic induced currents in power systems. Enerhetyka ta Elektryfikatsiia.  2012.  No 11/12.  P. 46–49. (Rus)
3. Kravchenko V.I. Lightning.  Kharkov: NTMT, 2010.  292 p. (Rus)
4. Smirnov B.M. Electrical period in the Earth’s atmosphere. Uspekhi Fizicheskikh Nauk.  2014.  Vol. 184.  No 11.  P. 1153–1176. (Rus)
5. Hayakawa M., Коrоvkin N.V. Seismo-Electromagnetic phenomena. ХII International Electrotechnical congress VELK–2011. Available at: http://www.ruscable.ru (accessed 09.12.2015) (Rus)
6. Frieman E.A., Kroll N.M. Lithospheric Propagation for undersea Communication.  Tech. Report (JASON) JSR–73–5, Stanford Research Institute, Menlo Park, Calif., 1973. – 23 p.
7. Hayakawa M. Observation of ULF (Ultra-Low-Frequency) Electromagnetic Emission Associated with Earthquakes. RAST– 2005 Proceedings.  2005.  P.776–781.
8. Rycroft M.J., Israelsson S., Price C. The global atmospheric electric circuit, solar activity and climate change.  Journal of Atmospheric and Solar-Terrestrial Physics, 62.  2000.  P. 1563–1576.
9. Rycroft M.J. Electrical processes coupling the atmosphere and ionosphere: an overview. Journal of Atmospheric and Solar-Terrestrial Physics, 68.  2006.  Pp. 445–456.
10. Soriano A.S., Navarro E.A., Paul D.L. Finite Difference Time Domain Simulation of the Earth-Ionosphere Resonant Cavity: Schumann Resonances. IEEE Trans. on Antennas and Propagation.  Vol. 53.  No 4.  2005.  Р. 1535–1541.
11. Thomson A.W.P., Mckay A.J.,Viljanen A. Review of Progress in Modelling of Induced Geoelectric and Geo-magnetic Fields with Special Regard to Induced Currents.  Acta Geophysics.  Vol. 57.  No 1.  2009.  P. 209–219.

 

PDF