PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2016.02.025


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue № 2, 2016 (March/April)
Pages 25 – 28


Shuaibov А.K., Mesarosh L.V., Chuchman M.P.
Uzhgorod National University,
str. Pidhirna, 46, Uzhgorod, 88000, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript



The discharge current dependences of the specific electrical power of the glow-discharge above the distilled water surface, the cathode spot area and area of cross-section of positive column has been investigated. For currents up to 32 mA, the discharge exists in the form of a single homogeneous channel. When the current is increased to increase in the cross-section of positive column to 22 mm2 was observed. The cathode spot area decreases from 14 (I = 10 mA) to 9.5 mm2 (I = 17-32 mA). At the current increasing from 12 to 32 mA the electric power of discharge was increased linearly from 15 to 32 W. The maximum value of the average volumetric density of electric discharge power is achieved at a current of 32 mA and consist of 0,35 W/mm3. Increasing of current from 12 to 16 mA give decreasing of discharge volume from 73 to 65 mm3, and the current rise from 22 to 32 mA linearly increases discharge volume from 65 to 80 mm3. The maximum value of electron concentration was estimated in the cathode spot area and in positive column at 10–32 mА current. The electron concentration consists up to ne = 1013 cm-3 in the cathode spot. In positive column it consists less then 2x1011 сm-3. References 11, figures 3.


Key words: concentration of electrons, glow-discharge, distilled water, specific electrical power of the glow-discharge, the cathode spot area, area of cross-section of positive column.


Received:    20.11.2015
Accepted:    04.02.2016
Published:  18.03.2016



1. Bozhko I.V., Charnyi D.V. A study on effectiveness of water purification from organic impurities by pulse discharges. Tekhnichna Elektrodynamika.  2013.  No 3.  P. 81–86. (Rus)
2. Gaisin A.F., Abdullin I.Sh., Gaisin F.M. Jet-Stream Multichannel Discharge with Electrolytic Electrodes in Processes of Solid State Treatment.  Kazan: Kazanskii Gosudarstvennyi Tekhnicheskii Universitet, 2006.  446 р. (Rus)
3. Zhilinsky V.V., Drozdovich V.E., Ivanova N.P., Zhdanok S.A. Galvano-plasmic processes in sulfate- and iodide- containing water media.  Izvestiia Natsionalnoi Academii nauk Belarusi. Seriia Khimicheskikh Nauk.  2010.  No 1.  Р. 12–15. (Rus)
4. Мesarosh L.V. Physics processes in low-temperature laser plasma and gas discharge of aluminum, tin and air. PhD degree applications thesis in physical and mathematical sciences degree of specialty 01.04.04 – Physical Electronics.  Uzhhorod: SHES «Uzhhorodskii Natsionalnyi Universitet», 2013.  173 p. (Ukr)
5. Mustafin T.V., Gaisin Al.F. Multichannel discharge between jet electrolyte cathode and solid anode. Teplofizika Vysokikh Temperatur. 2011.  Vol. 49.  No 4.  Р. 615–619. (Rus)
6. Raizer Yu.P. Gas Discharge Physics.  Moskva: Nauka, 1992.  536 p. (Rus)
7. Sirotkin N.A., Khlyustova A.V., Maksimov A.I. Numerical simulation of the gas phase composition in a glow discharge with an electrolyte cathode. Elektronnaia Obrabotka Materialov.  2014.  Vol. 50.  No 4. P. 323–329.
8. Shuaibov A.K., Chuchman M.P., Mesarosh L.V. Characteristics of a glow discharge in atmospheric pressure air over the water surface. Zhurnal Tekhnicheskoi Fiziki.  2014.  Vol. 59.  No 6.  Р. 847–851. (Rus)
9. Shuaibov A.K., Chuchman M.P., Kozak Ya.Yu. Electrical characteristics of glow discharge with electrolytic cathode based on copper sulphate in the air. Uspekhi Prikladnoi Fiziki. 2014.  Vol. 2.  No 1.  Р. 41–44. (Rus)
10. Andre P., Barinov Yu., Faure C., Kaplan V., Lefort A., Skol,nik S., and Vacher D. Experimental study of discharge with liquid non-metallic (tap-water) electrodes in air at atmospheric pressure. Journal of Physics D: Applied Physics.  2001.  Vol. 34.  No 24.  P. 3456–3465.
11. Bruggeman P., Leys C. Non-thermal plasmas in and in contact with liquids. Journal of Physics D: Applied Physics.  2009.  Vol. 42.  053001 (28 p).