PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2016.02.058


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue № 2, 2016 (March/April)
Pages 58 – 62


Varetsky Y.1,2*, Hanzelka Z.1
1 – AGH-University of Science & Technology,
al. Mickiewicza 30, 30-059, Krakow, Poland,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2 – Lviv Polytechnic National University,
Bandera str. 12, Lviv, 79013, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ID ORCID: http://orcid.org/0000-0001-5651-9619



This paper discusses the issue of modelling a hybrid renewable energy system for a micro-grid connected to a bulk power system. The objective of the work is to create a tool for assessing the feasibility of an energy hybrid system operation with an appropriate control strategy to ensure its efficiency. A hybrid of a solar, a wind and an energy storage device was examined. The integrated model uses statistical indices of solar irradiation and wind speed data to simulate power flow in the system. As the microgrid load demand is variable, power interchange with the bulk power system is managed by a power system supervisor. The control strategy and the load profile of the microgrid must be used to estimate the correct size of the hybrid system storage system. The proposed model was subjected to a case study. References 9, figures 8.


Key words: Modelling, microgrid, hybrid energy system.


Received:    18.04.2015
Accepted:    11.02.2016
Published:  18.03.2016



1. Alireza S., Morteza A., Mehdi E. A Probabilistic Modeling of Photo Voltaic Modules and Wind Power Generation Impact on Distribution Networks. IEEE Systems Journal. 2012.  Vol. 6.  No 2.  P. 254–259. DOI: https://doi.org/10.1109/JSYST.2011.2162994
2. Belu R., Koracin D. Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain.  Journal of Wind Energy, Article ID 739162.  2013.  P. 1–12. DOI: https://doi.org/10.1155/2013/739162
3. Ekren O., and Ekren B.Y. Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology. Applied Energy 85.  2008.  P. 1086–1101. DOI: https://doi.org/10.1016/j.apenergy.2008.02.016
4. Maity and Rao S. Simulation and pricing mechanism analysis of a solar-powered electrical microgrid.  IEEE Systems Journal.  2010.  Vol. 4.  No 3.  P. 275–284. DOI: https://doi.org/10.1109/JSYST.2010.2059110
5. Moriana, San Martin I., Sanchis P. Wind-photovoltaic hybrid systems design.  2010 Int. Symposium on Power Electronics Electrical Drives Automation and Motion (SPEEDAM).  2010.  P. 610-615.
6. Nema P., Nema R.K., Rangnekar S. A current and future state of art development of hybrid energy system using wind and PV-solar. A review. Renewable and Sustainable Energy Reviews, 13.  2010.  Pp. 2096–2103. DOI: https://doi.org/10.1016/j.rser.2008.10.006
7. Ozaki Y., Miyatake M., Iwaki D. Power control of a stand-alone photovoltaic/ wind/ energy storage hybrid generation system with Maximum Power Point Tracker. Int. Conf. on Electrical Machines and Systems (ICEMS), 2010.  P. 607–611.
8. Paska J., Biczel P., K1os M. Hybrid power systems – An effective way of utilising primary energy sources.  Renewable Energy, 34.  2009.  P. 2414–2421. DOI: https://doi.org/10.1016/j.renene.2009.02.018
9. Zhou W., Lou C., Lu L., Yang H. Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems. Applied Energy.  2010.  Vol. 87.  P. 380–389. DOI:  https://doi.org/10.1016/j.apenergy.2009.08.012