PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2016.02.063


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue № 2, 2016 (March/April)
Pages 63 – 68


I.V.Bozhko*, V.I.Zozuljov, V.V.Kobylchak
Institute of Electrodynamics National Academy of Science of Ukraine,
Pr. Peremogy, 56, Kyiv-57, 03680, Ukraine.
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
* ORCID ID: http://orcid.org/0000-0002-7955-246X



The generator of short pulses amplitude of up to 30 kV and the steepness of the front in 1011…1012 V/s is described. It designed for industrial technology generation ozone and direct water treatment by pulsed barrier discharge. Inductive energy storage and diodes with the time of breakage of current ~ 40 ns is used in the final stage of the generator. The coefficient of energy transfer from the primary energy storage to a resistance load reaches 38%, in the case of a load in the form of a barrier discharge - 20%. The conclusion is that a significant part of the energy transmitted from the primary source, stored in a capacity of dielectric barrier discharge chamber, which is then wasted unproductively. The path of beneficial using this capacitive energy is proposed when discharge camera shunts immediately after pulse barrier discharge with magnetic switch. A thorough coordination the impedance of discharge camera with options of the generator is also needed to improve the efficiency of using of energy from the primary source. References 9, figures 5, table 1.


Key words: SOS-generator, SOS-diode, magnetic switch, pulse barrier discharge, energy of the pulse.


Received:    15.09.2015
Accepted:    20.11.2015
Published:  18.03.2016



1. Blaga O.V., Bozhko I.V. Research of ozone generation in pulse barrier discharge. Tekhnichna Elektrodynamika.  2013.  No 5.  P. 85–89. (Ukr)
2. Blaga О.V., Bozhko I.V., Zozuljov V.I., Kobylchak V.V. Improvement of the power supply to increase the energy efficiency of pulse barrier discharge.  Tekhnichna Elektrodynamika.  2014.  No 6.  P. 76–80. (Ukr)
3. Bozhko I.V., Charnyi D.V. A study on effectiveness of water purification from organic impurities by pulse discharges. Tekhnichna Elektrodynamika.  2013.  No 3.  P. 81–86. (Rus)
4. Vasiliev P.V., Lyubutin S.K., Pedos M.S., Ponomarev A.V., Rukin S.N., Sabitov A.K., Slovikovsky B.G., Timoshenko S.P., Ciranov S.N., Cholah S.O. SOS-generator for technological applications. Pribory i Tekhnika Eksperimenta.  2011.  No 1.  P. 61–67. (Rus) DOI:  https://doi.org/10.1134/S0020441211010118
5. Meerovich L.A., Vatin I.M., Zaizev E.V., Kandikin V.M. Magnetic generators of pulses.  Moskva: Sovetskoe Radio, 1968.  476 p. (Rus)
6. Rukin S.N. Generators of powerful nanosecond pulses with semiconductor opening switch. Pribory i Tekhnika Eksperimenta.  1999.  No 4.  P. 5–36. (Rus)
7. Suprunovska N.I., Shsherba A.A. Process of energy redistribution between parallel connected capacitors. Tekhnichna Elektrodynamika.  2015.  No 4.  P. 3–11. (Rus)
8. Malik Muhammad Arif. Water purification by plasmas: which reactors are most energy efficient?  Plasma chemistry and plasma processes.  2010.  Vol. 30.  No 4.  P. 21–31.
9. Sugai Taichi, Liu Wei, Tokuchi Akira, Jiang Weihua, Minamitani Yasushi. Influence of a circuit parameter for plasma water treatment by an inductive energy storage circuit using semiconductor opening switch. IEEE transactions on plasma science.  2013.  Vol. 41.  No 4.  P. 967– 974. DOI: https://doi.org/10.1109/TPS.2013.2251359