PDF Печать E-mail


DOI: https://doi.org/10.15407/techned2016.02.069

STUDY ON INTERNET OF THINGS ELECTRIC SYSTEM BASED ON DISTRIBUTED SMART TERMINALS IN DEMAND SIDE MANAGEMENT

Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue № 2, 2016 (March/April)
Pages 69 – 77

 

Authors
G.L.Zheng1, L.Zhang1, J.W.Chi2
1 – Department of Automation, Wuhan University,
No. 8, Donghu South Road, 430072, Wuhan, China,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
2 – Infrastructure Management Department, Wuhan University,
No. 299, Bayi Road, 430072, Wuhan, China

 

Abstract

Demand side management (DSM) plays an important role in enhancing electric power grid operation, which is sophisticated due to the versatility of different loads, the vast number of users as well as the distribution in space and time. Internet of things (IoT), goes without say, is a perfect solution to the bemused situation. In this paper, the construction and implementation scheme of an IoT electricity management system for DSM based on advanced electric smart control terminals and remote load controller (SRLC), is introduced. The system not only achieves real-time online monitoring but also achieves remote dynamic load management integrated with various functions, especially “load feature identification” and “dangerous load shedding” are applied successfully in student dormitories (5 buildings with 750 units) of Wuhan University. A transparent electricity management platform is created on both Wuhan University’s information WEB stations (called “cloud”) and all the relative students’ mobile phones (called “terminal”) by this IoT system. The equipment costs are discussed for installing this system. The application results show that the system provides an optimal decision and reliable reference data for building energy management, with additional advantages on safety, low cost and easy implementation with smart power grid or e-Energy. References 15, figures 10.

 

Key words: Smart terminal, Internet of Thing (IoT), Demand Side Management (DSM), electric system.

 

Received:    18.11.2015
Accepted:    12.01.2016
Published:  18.03.2016

 

References

1. Anvari-Moghaddam A, Monsef H, Rahimi-Kian A. Optimal Smart Home Energy Management Considering Energy Saving and a Comfortable Lifestyle. IEEE Transactions on Smart Grid.  2015.  Vol. 6.  No 1.  P. 324–332. DOI: https://doi.org/10.1109/TSG.2014.2349352
2. Avramenko V., Martyniuk A., Hurieieva T. Study of amplitude-frequency spectra of active power through power system transmission lines. Tekhnichna Elektrodynamika.  2015.  No 3.  P. 47–51. (Ukr)
3. Barbato A., Capone A., Chen L. A Distributed Demand-Side Management Framework for the Smart Grid. Computer Communications.  2015.  Vol. 57.  No C.  P. 13–24. DOI: https://doi.org/10.1016/j.comcom.2014.11.001
4. Behrangrad M. A review of demand side management business models in the electricity market. Renewable & Sustainable Energy Reviews.  2015.  Vol. 47.  P. 270–283. DOI: https://doi.org/10.1016/j.rser.2015.03.033
5. Colak I., Kabalci E., Fulli G. A survey on the contributions of power electronics to smart grid systems. Renewable & Sustainable Energy Reviews.  2015.  Vol. 47.  P. 562–579. DOI: https://doi.org/10.1016/j.rser.2015.03.031
6. Guilin Zheng. Three-phase smart controller. Invention patent.  NO.ZL2010 1 0184066.2.  2011. (Chn)
7. Jiaoming Liu. The Study on Movement Mechanism and Simulation of Low Voltage Switching Arc.  Science Press: Binjing, 2013.  185 p.
8. Keles C., Karabiber A., Akcin M. A smart building power management concept: Smart socket applications with DC distribution. International Journal of Electrical Power & Energy Systems.  2015.  Vol. 64.  P. 679–688. DOI: https://doi.org/10.1016/j.ijepes.2014.07.075
9. Maasoumy M., Nuzzo P., Sangiovanni-Vincentelli A. Smart Buildings in the Smart Grid: Contract-Based Design of an Integrated Energy Management System, Cyber Physical Systems Approach to Smart Electric Power Grid.  Springer: Berlin, 2015.  132 p.
10. R., Joumaa H, Ploix S. Managing energy Smart Homes according to energy prices: Analysis of a Building Energy Management System. Energy & Buildings. 2014. Vol. 71.  P. 155–167. DOI:  https://doi.org/10.1016/j.enbuild.2013.12.018
11. Sheikhi A., Rayati M., Bahrami S. A cloud computing framework on demand side management game in smart energy hubs. International Journal of Electrical Power & Energy Systems.  2015.  Vol. 64.  P. 1007–1016. DOI: https://doi.org/10.1016/j.ijepes.2014.08.020
12. Suntrans. Available at: http://suntrans.net/Web/Chinese/ProductInfo/ProductsDetail.aspx? Product ID=46. 2014. (Chn)
13. Wang Z., Zheng G. Residential appliances identification and monitoring by a nonintrusive method. Smart Grid, IEEE Transactions on.  2012.  Vol. 3.  No 1. P. 80–92.
14. Zhihong X.U. Technology Solutions of Control Electric Apparatus Service in Energy Management System. Low Voltage Apparatus.  2013.  No 1.  P. 14–19.
15. Zhou H., Lai J., Hu W. Demand-side energy management: FTTH-based mode for smart homes. In American Control Conference (ACC), IEEE, Portland, USA.  2015.  P. 1704–1709.

 

PDF