PDF Печать E-mail

DOI: https://doi.org/10.15407/techned2016.021.083


Journal Tekhnichna elektrodynamika
Publisher Institute of Electrodynamics National Academy of Science of Ukraine
ISSN 1607-7970 (print), 2218-1903 (online)
Issue № 2, 2016 (March/April)
Pages 83 – 89


Zvarich V.
Institute of electrodynamics Academy of Science of Ukraine,
Peremohy av., 56, Kyiv-057, 03680, Ukraine,
e-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript



Key words: linear autoregressive process, characteristic function, kernel of transformation, generative process, infinitely-divisible distributions, negative binomial distribution, vibration diagnosis of rolling bearings.


Received:    12.12.2014
Accepted:    16.02.2016
Published:  18.03.2016



1. Zvarich V.N., Marchenko B.G. Linear processes of autoregression in vibrodiagnostics problems. Problemy Prochnosti i Nadezhnosti Mashin.  1994.  No 3.  P. 96–106. (Rus)
2. Zvarich V.N., Marchenko B.G. Generating process characteristic function in the model of stationary linear AR-gamma process. Izvestiia VUZov. Radioelektronika.  2002.  Vol. 45.  No 8.  P. 12–18. (Rus)
3. Zvarich V. Application of autoregressive methods for wind power generators vibrodiagnostics system. Vidnovliuvana enerhetyka. 2005.  No 1.  P. 49–54. (Rus)
4. Krasilnikov A.I. Models of Noise-type Signals at the Heat-and-Power Equipment Diagnostic Systems.  Kiev: OOO Poligraf-service, 2014.  112 p. (Rus)
5. Lukach E. Characteristic function.  Moskva: Nauka, 1979.  432 p.
6. Marchenko B. Method of Stochastic Integral Representations and their Applications in Radio-Engineering. Kiev: Naukova Dumka, 1973.  191 p. (Rus)
7. Marchenko B.G., Zvarich V., Bednyi N. Linear random processes in some problems of information signal simulation. Elektronnoe Modelirovanie.  2001.  Vol. 23.  No 1.  P. 62–69. (Rus)
8. Stognii B., Sopel M. Fundamentals of monitoring process in electroenergy. About the concept of monitoring process. Tekhnichna Elektrodynamika.  2013.  No 1.  P. 62–69. (Ukr)
9. Antoni J., Bonnardot F., Raad A., Badaoui M. Cyclostationary modeling of rotating machine vibration signals. Mechanical Systems and Signal Processing.  2004.  Vol. 18.  P. 1285–1314. DOI: https://doi.org/10.1016/S0888-3270(03)00088-8
10. Babak V., Filonenko S., Kornienko-Miftakhova I., Ponomarenko A. Optimization of Signal Features under Object's Dynamic Test. Aviation.  2008.  Vol. 12.  No 1.  P. 10–17. DOI: https://doi.org/10.3846/1648-7788.2008.12.10-17
11. Gorodzha K.A., Myslovich M.V., Sysak R. Analysis of Spectral Diagnostic Parameters based on mathematical Model of electrical equipment's responses due to impact excitation. Pzeglad Electrotechniczny.  2010.  Vol. P.86.  No 1.  P. 38–40.
12. Javorskyj I., Isaev I., Majewski J., Yuzefovych R. Component covariance analysis for periodically correlated random processes. Signal Processing.  2010.  Vol. 90.  No 1.  P. 1083–1102. DOI:  https://doi.org/10.1016/j.sigpro.2009.07.031
13. McKenzie Ed. Innovation Distributions for Gamma and Negative Binomial Autoregressions. Scandinavian Journal of Statistics. Theory and Applications.  1987.  Vol. 14.  P. 79–85.
14. Worden K., Staszewski W.J., Hensman J.J. Natural Computing for mechanical Systems Research: A Tutorial Owerview. Mechanical Systems and Signal Processing.  2011.  Vol. 25.  P. 4–111. DOI: https://doi.org/10.1016/j.ymssp.2010.07.013