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Розглянуто задачу прогнозування електричного навантаження енергооб’єкта в умовах високої варіативності 
споживання. Проведено порівняльний аналіз ефективності моделей прогнозування із горизонтами 1 й 24 
години. Для першого варіанта досліджено методи SSA, Холта-Вінтерса, а також архітектури нейромереж 
LSTM і Transformer. Для другого – додатково розглянуто моделі з попередньою декомпозицією на основі 
перетворення Гільберта–Хуанга (модель M1) та поліноміальної регресії (модель M2). Проведено оцінку якості 
моделей за допомогою чотирьох метрик: середньої похибки (ME), середньої абсолютної похибки (MAE), 
середньоквадратичної похибки (RMSE) та середньої абсолютної відносної похибки (MAPE). Отримані 
результати свідчать, що за горизонта 1 година модель Transformer забезпечила найменші значення MAE та 
MAPE (2,54 кВт та 4,95% відповідно), що свідчить про її високу точність. LSTM продемонструвала схожу 
точність із найменшим зміщенням прогнозу. Моделі SSA та Holt-Winters суттєво поступилися за точністю, 
хоча й показали кращу стабільність у запобіганні великим похибкам. У разі прогнозування на 24 години 
найкращих результатів за точністю та стабільністю досягла модель Transformer (МАЕ 3,61 кВт). Модель 
M1, побудована на основі Гільберта–Хуанга, показала збалансовану продуктивність за всіма метриками, а 
LSTM – високу абсолютну точність. Додатковий аналіз частот розподілу середньої похибки показав, що 
Transformer і LSTM забезпечують високу щільність точних прогнозів у вузьких інтервалах похибок, на відміну 
від SSA та Holt-Winters, для яких характерні систематичні зсуви. Наукова новизна роботи полягає у визначенні 
закономірностей застосування нейромережевих моделей у задачах прогнозування навантаження непобутових 
споживачів: вперше показано перевагу архітектури Transformer для короткострокових горизонтів 
прогнозування. Бібл. 16, рис. 2, табл. 3. 
Ключові слова: прогнозування навантаження, часові ряди, мікромережа, LSTM, Transformer, декомпозиція, 
Holt-Winters, SSA. 

 
Вступ. Сучасні умови функціонування Об’єднаної енергосистеми України характеризуються 

підвищеною нестабільністю, зумовленою комплексом глобальних викликів (енергетична криза, 
кліматичні зміни) та локальних ризиків (воєнні дії, техногенні інциденти) [1]. Актуальні цілі 
посилення стійкості ОЕС України в цих умовах наведені, зокрема, в Стратегії розвитку розподіленої 
генерації на період до 2035 року [2], серед яких виділено збільшення сумарної встановленої 
потужності об’єктів відновлюваної енергетики виробниками та активними споживачами, збільшення 
сумарної встановленої потужності та ємності установок зберігання енергії, модернізація мережевої 
інфраструктури, створення мікромереж на принципах «розумних мереж». 

За таких умов забезпечення сталої, безперебійної та економічно ефективної роботи 
енергооб’єктів вимагає впровадження інтелектуальних технологій керування навантаженням, 
ключовим елементом яких є високоточне прогнозування обсягів споживання електричної енергії на 
різних часових горизонтах.  

Особливе значення ця задача має для непобутових споживачів електричної енергії, частка 
яких у структурі споживання електроенергії в окремих регіонах перевищує 60%. До цієї категорії 
належать промислові підприємства, логістичні центри, заклади охорони здоров’я, об’єкти 
транспортної інфраструктури та ІТ-центри обробки даних. Споживання таких об’єктів відзначається 
високою варіативністю, зумовленою виробничими циклами, зміною режимів роботи обладнання та 
впливом зовнішніх чинників (температурні коливання, погодні умови, графіки поставок сировини). 
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Неврахування цих факторів у прогнозних моделях призводить до значних небалансів, підвищення 
тарифних витрат та зниження стійкості енергопостачання. 

В умовах розвитку концепції активного споживача (prosumer) [3], що поєднує функції 
споживання та генерації електроенергії, зростає потреба у точному прогнозуванні як для побудови 
власного енергобалансу, так і для оптимізації взаємодії з ринком. Наприклад, непобутовий споживач 
електричної енергії, що має дахову фотоелектричну станцію та систему накопичення енергії, здатен в 
години низьких цін накопичувати електроенергію, а в години пікового навантаження – продавати її в 
мережу. Ефективність такої стратегії прямо залежить від точності прогнозів виробітку та споживання. 

Мікромережі, що інтегрують локальні джерела генерації, установки зберігання енергії та 
гнучке навантаження споживачів, потребують прогнозних рішень для оптимального керування 
режимами своєї роботи [4]. Зокрема, у разі аварійного відключення від систем розподілу або роботі у 
режимі «острова» точність прогнозування визначає здатність системи підтримувати баланс між 
генерацією та споживанням, уникати перевантажень і забезпечувати енергопостачання критичних 
споживачів (наприклад, лікарень або систем водопостачання). 

У більш широкому контексті впровадження високоточних алгоритмів прогнозування є 
необхідною умовою підвищення гнучкості енергосистеми. Для системного оператора це означає 
можливість зменшення потреби у швидкодіючих резервних потужностях. Для операторів 
розподільчих мереж це дає змогу знизити витрати, пов’язані з закупівлею електричної енергії для 
покриття втрат в мережі [5]. Для операторів мікромереж – підвищення автономності та ефективності 
використання наявних ресурсів. Для непобутових споживачів – зменшення витрат на електроенергію 
та оптимізація графіків роботи обладнання. 

Вибір часових горизонтів прогнозування (1 година та 24 години) обумовлений різними 
завданнями енергоменеджменту. Прогноз на 1 годину вперед використовується для оперативного 
керування – балансування генерації та споживання у режимі реального часу, коригування графіків роботи 
обладнання, зміни режимів зарядки/розрядки накопичувачів, а також задля своєчасного реагування на 
аварійні події або різкі коливання навантаження. Такий прогноз особливо важливий задля підтримки 
стабільності мікромереж та уникнення короткострокових небалансів. Прогноз на 24 години вперед є 
ключовим для добового планування: формування заявок на ринку «на добу наперед» (Day-Ahead Market), 
оптимізації закупівлі електроенергії, планування роботи резервних джерел та розподілу навантаження 
між різними об’єктами. Для промислових споживачів це дає можливість інтегрувати прогноз у виробничі 
графіки, зменшити витрати на електроенергію та уникнути пікових тарифів. 

Метою даного дослідження є аналіз та порівняння ефективності різних методів 
прогнозування електричного навантаження для непобутового споживача, а також виявлення 
закономірностей і методичних особливостей застосування класичних та нейромережевих моделей на 
різних горизонтах прогнозування. 

Задля досягнення поставленої мети були сформульовані такі основні завдання. 
1. Побудувати та адаптувати моделі прогнозування навантаження з використанням сучасних 

методів, зокрема Transformer, LSTM, SSA, Holt-Winters та моделей з попередньою декомпозицією. 
2. Провести навчання моделей на реальних даних споживання електроенергії досліджуваного 

енергооб’єкта. 
3. Оцінити точність моделей під час прогнозування на 1 та 24 години з використанням метрик 

ME, MAE, RMSE та MAPE. 
Опис досліджуваних моделей. В роботі проведено порівняльне дослідження результатів 

прогнозування за допомогою таких моделей: однофакторних (SSA, метод Холта-Вінтерса), 
багатофакторних (моделі декомпозиції 1 та 2), моделей ШНМ (Transformer, LSTM). 

1. Аналіз сингулярного спектру (SSA) [6] використовується задля аналізу та прогнозування 
часових рядів шляхом їх розкладання на трендові, періодичні та шумові компоненти. Основні кроки 
методу включають: побудову матриці траєкторій (часовий ряд поділяється на підпослідовності за 
допомогою ковзного вікна з 30% історичних даних, забезпечуючи, щоб його довжина була кратною 
7); виконання сингулярного розкладання (SVD) матриці траєкторій на три компоненти для вилучення 
основних структур ряду; вибір рангу та реконструкція згладженого ряду з домінантних компонентів; 
застосування діагонального усереднення для агрегації вилучених компонентів назад у часовий ряд і, 
нарешті, прогнозування за допомогою методів екстраполяції задля отримання майбутніх значень. 

2. Метод Холта-Вінтерса (HW) [7] (мультиплікативна модель) використовується для 
прогнозування часових рядів з яскраво вираженими сезонними та трендовими компонентами. Він 
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базується на трьох ключових елементах: рівні (центральна тенденція ряду), тренді (швидкість змін з 
часом) та сезонності (періодичні коливання). Компоненти оновлюються рекурсивно, а прогноз 
обчислюється на основі їхніх значень. Параметри згладжування (α, β, γ) вибираються в діапазоні від 1 
до 20 з кроком 0,1 задля досягнення оптимальних результатів. 

3. Модель декомпозиції 1 (M1). Попереднє розкладання ретроспективних даних часових рядів 
виконується за допомогою перетворення Гільберта-Хуанга [8], розділяючи їх на базову складову та 
складові, що залежать від температури повітря та дня тижня. Наявність цих складових у кожному 
годинному профілі визначається шляхом контролю коефіцієнта кореляції між комбінацією власних 
функцій моди та значень зовнішніх факторів. Прогнозування базової складової проводиться за 
допомогою SSA, тоді як залежні складові прогнозуються за допомогою квантильної регресії з подальшою 
обробкою залишків за допомогою ARIMA. Отримані результати погодинного сегмента додатково 
коригуються задля забезпечення узгодженості шляхом контролю кривизни форми добового графіка. 

4. Модель декомпозиції 2 (М2). Попереднє розкладання ретроспективних даних часових рядів 
проводиться за допомогою поліноміальної регресії, розділяючи їх на базову складову, складові, що 
залежать від температури повітря та дня тижня, та стохастичну складову. Наявність залежних складових у 
кожному погодинному сегменті визначається шляхом контролю коефіцієнта кореляції. Прогнозування 
залежних компонентів виконується за допомогою поліноміальної регресії, тоді як стохастична 
компонента генерується в межах заздалегідь визначених меж. Отримані результати погодинного сегмента 
згодом коригуються задля узгодженості шляхом контролю кривизни форми добового графіка. 

5. Transformer (Т) [9 – 12] – нейронна модель, побудована на основі механізму самоуваги (self-
attention), яка дає змогу ефективно виявляти залежності між елементами послідовності незалежно від 
їх взаємного розташування. На відміну від рекурентних моделей, Transformer виконує обробку усієї 
послідовності одночасно, що значно підвищує швидкість обчислень і дає можливість ефективно 
масштабувати модель. Основу архітектури становлять блоки багатоголової самоуваги та позиційного 
кодування, які забезпечують контекстуальне зважування інформації.  

Модель Transformer, використана для прогнозування на 24 точки, побудована за принципом 
спільного енкодера з розгалуженою структурою виходів, де кожен вихід відповідає за окрему точку 
прогнозу. Вхідні ознаки послідовно перетворюються лінійним шаром у простір прихованих 
представлень і далі обробляються трансформер-енкодером з багатоголовою механікою уваги. Це дає 
змогу моделі вловлювати складні часові залежності та взаємозв’язки у даних, зберігаючи глобальний 
контекст у всьому вікні спостереження. 

6. LSTM [13 – 16] – тип рекурентної нейронної мережі, який використовує спеціальні комірки 
пам’яті для моделювання часових залежностей у послідовних даних. Архітектура LSTM включає три 
типи клерувальних елементів: вхідний, забування та вихідний, які регулюють потік інформації через 
часові кроки. Завдяки цьому мережа здатна ефективно зберігати релевантну інформацію протягом 
тривалих періодів часу, що забезпечує високу точність прогнозування у роботі з нестаціонарними 
часовими рядами.  

Вибірка. Досліджуваним об’єктом є адміністративна будівля – непобутовий споживач з 
характерним поєднанням постійного базового навантаження (серверні кімнати, системи освітлення, 
вентиляції) та змінного робочого навантаження (офісні та лабораторні приміщення). За період 
спостережень середнє навантаження становило 59,6 кВт, максимальне досягало 394,8 кВт, мінімальне 
опускалося до 10,96 кВт (0 за умов аварійних відключень). У структурі споживання простежується 
виражена добова та тижнева циклічність: пікові значення навантаження спостерігаються у робочі 
години буднів, мінімальні – у нічний час та вихідні. Досліджувана вибірка щогодинних даних про 
навантаження охоплює період з 11.12.2020 по 30.09.2024. Прогнозування здійснено на період, що 
становить 10% загальної вибірки, з 15.05 по 30.09.2025. 

У цьому дослідженні «особливі» дні (офіційні та неофіційні свята, перенесення вихідних, 
зміни літнього/зимового часу) не виділялися окремо. Задля прогнозування обсягів споживання в 
«особливі» дні необхідним є застосування окремих методів, оскільки їх сигнал в межах всієї вибірки 
є незначним, що унеможливлює побудову моделі, яка однаково ефективно враховує і регулярні, і 
«особливі» дні. В рамках даного дослідження дані по «особливим» дням було залишено у вибірці, 
оскільки, враховуючи рекурентний характер моделі, виключення одного дня призводить до більшого 
спотворення вхідних даних для прогнозу декількох наступних діб або тижнів. Це рішення прийнято з 
метою збереження цілісності вибірки та наближення моделі до умов реальної експлуатації, коли 
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прогноз формується без попереднього ручного коригування даних. Таким чином, вплив нерегулярних 
змін у навантаженні враховується опосередковано в межах загального навчання моделі. 

Метеодані отримано для міста Києва, де розташований досліджуваний об’єкт. Точна 
координата метеостанції не уточнювалася, проте зроблено припущення, що просторові відмінності 
кліматичних умов у межах міста є незначними і не впливають суттєво на якість прогнозування. 

Результати прогнозування. Досліди із прогнозування на 1 годину вперед здійснено за 
допомогою моделей SSA, HW, LSTM та Transformer, на 24 години – за допомогою моделей SSA, HW, 
LSTM, Transformer та моделей декомпозиції М1 та М2.  

В моделях декомпозиції враховано 2 зовнішні чинники: температура повітря та номер дня 
тижня. В моделях LSTM та Transformer – 24 зовнішні чинники:  

 статистичні (номери години, дня тижня, місяця, бінарний показник робочий/вихідний, 
попередні значення із періодом 1, 24, 48 та 168 годин, середньоквадратичне відхилення та середнє 
значення попередніх 6, 12 та 24 годин);  

 погодні: 
– горизонтальна складова швидкості вітру на висоті 10 м, напрямок СХ-ЗХ (м/с); 
– горизонтальна складова швидкості вітру на висоті 10 м, напрямок ПН-ПД (м/с); 
– температура точки роси на висоті 2 м (К); 
– температура повітря на висоті 2 м (К); 
– атмосферний тиск на рівні землі (Па); 
– кількість опадів (м водного стовпчика); 
– чисте короткохвильове випромінювання (сонячне) на поверхні (Дж/м²); 
– хмарність (1 = повністю хмарно, 0 = без хмар); 
– тип опадів (0 = без опадів, 1 = дощ, 2 = мокрий сніг, 3 = сніг); 
– кількість снігопаду (м водного стовпчика).  

В табл. 1 наведено похибки прогнозування для горизонту 1 година. 
Таблиця 1 

Згідно із наведеними в табл. 1 результатами, 
найнижчі значення середньої абсолютної похибки (MAE= 
=2,54 кВт) та середньої абсолютної відносної похибки 
(MAPE=4,95%) продемонструвала модель Transformer. 
LSTM також показала схожу точність прогнозування з MAE 
=2,95 кВт та MAPE=9,62%. При цьому LSTM має найменше 
зміщення (ME=-0,38 кВт), що вказує на відсутність 

систематичного заниження чи завищення прогнозів. 
Моделі SSA та HW суттєво поступаються за точністю. Зокрема,  результати HW 

характеризуються систематичним завищенням прогнозів (ME=6,37 кВт) та високою відносною 
похибкою (MAPE=35,34%). 

Таким чином, найкращу якість прогнозування продемонструвала модель Transformer, яка 
може бути рекомендована для практичного використання. Модель LSTM розглядається як ефективна 
альтернатива або додатковий елемент в ансамблевому підході. Моделі SSA та HW доцільно 
використовувати лише як базові або порівняльні методи через їхню високу похибку. 

На рис. 1 зображено теплову карту частот ME моделей у разі прогнозування на 1 годину. 
Transformer демонструє найкращу стабільність прогнозування. Більшість його похибок 

(61,9%) лежать у вузьких інтервалах від -1 до +5 кВт, причому найвища частота спостерігається в 
інтервалі 1–5 кВт (35,43%) та 0–1 кВт (26,50%). Частка великих похибок (>±20 кВт) становить лише 
1,38%, що є найнижчим значенням серед усіх моделей. Результати LSTM мають меншу 
концентрацією точних прогнозів. Частка високих значень похибок (>±20 кВт) невелика – 2,12%. 

Результати SSA характеризуються широким розподілом похибок, особливо в інтервалах 
великих від’ємних значень. Сукупно 50,77% похибок припадає на інтервали від -50 до -5 кВт, що 
вказує на схильність моделі до систематичного заниження результатів прогнозування. Частка 
великих абсолютних похибок (|ME| > 20 кВт) становить 23,29%, що суттєво погіршує надійність цієї 
моделі. 

Похибки T LSTM SSA HW 

ME, кВт 0,87 -0,38 0,43 6,37 

MAE, кВт 2,54 2,95 15,55 12,83 

RMSE, кВт 5,66 5,67 20,91 20,82 

MAPE, % 4,95 9,62 44,32 35,34 
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Результати HW мають зосередження 
похибок в інтервалі -5…-1 кВт (27,85%). Проте 
модель також має високу частку великих 
позитивних похибок (від 20 до 50 кВт – 16,46%, 
>50 кВт – 4,44%), що свідчить про нестабільність 
у крайніх випадках. Загальна частка похибок 
|ME| > 20 кВт становить 20,89%. 

В табл. 2 наведено похибки прогнозу-
вання для горизонту 24 години. 

Модель M1, де застосовано декомпо-
зицію за допомогою методу Гільберта–Хуанга, 
демонструє кращі результати порівняно із М2, де 
застосовано поліноміальну регресію задля 
декомпозиції. М2 демонструє високі значення 
похибок за всіма метриками. 

LSTM показала дещо ліпші результати за 
абсолютною похибкою (MAE=5,69 кВт) 
порівняно з M1, проте має вище зміщення (ME= -
1,65 кВт) та більший відсоток середньої похибки 
(MAPE=20,86%). Це свідчить про деяке 

заниження прогнозованого навантаження в 
середньому. Модель Transformer в цілому 
перевищує усі моделі за точністю. Проте, 
значення ME 1 кВт, що за модулем більше, 
ніж у M1 (-0,47) та SSA (0,17), свідчить про 
зміщення розподілу похибок в додатну 
область. 

SSA та HW демонструють значне 
зміщення прогнозу в бік заниження, зокрема HW має найбільше негативне зміщення серед усіх 
моделей (ME = -4,97 кВт). 

На рис. 2 зображено теплову карту частот ME 
моделей у разі прогнозування на 24 години. 

Згідно із рис. 2 в межах похибок ±1 кВт 
найкращі результати 30% демонструє модель 
Transformer. Значна частка її похибок (80,2%) 
сконцентрована в діапазоні -5…5%. Для моделі 
LSTM це значення становить 66,2%, і вона значно 
поступається Transformer у центральному інтервалі. 
Transformer та LSTM значно рідше припускаються 
екстремальних значень похибок: 2% та 4,9% 
відповідно  випадків мають похибку понад 20 кВт. 
Тоді як для моделей SSA, HW та M2 ці значення 
значно вищі від 7 до 20,8%.  

У табл. 3 наведено результати порівняння 
моделей прогнозування навантаження за середньою 
абсолютною похибкою (MAE) для різних тарифних 
інтервалів доби (пікові, напівпікові та позапікові 
години). Такий підхід дає можливість оцінити 
практичну придатність прогнозів у найбільш 
критичних періодах енергоспоживання, коли похибки прогнозу мають найбільший вплив на 
балансування мікромережі та фінансові витрати споживача. 

Вибір саме метрики MAE обґрунтований її інтерпретаційною простотою: вона виражає 
середнє відхилення прогнозу від фактичних значень у тих самих одиницях (кВт), що й навантаження, 
без урахування знака похибки. Це дає змогу прямо оцінити масштаб відхилень для кожної моделі в  

Таблиця 2  

Похибки M1 M2 T LSTM SSA HW 

ME, кВт -0,47 -4,08 1,00 -1,65 0,17 -4,97 

MAE, кВт 6,16 13,13 3,61 5,69 9,59 10,46 

RMSE, кВт 10,69 20,74 7,05 9,88 15,1 17,3 

MAPE, % 17,61 40,13 15,00 20,86 28,29 39,5 

Рис. 1 

Рис. 2 
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різні години доби. 
Аналіз похибок 

за тарифними інтерва-
лами свідчить, що 
найнижчі значення MAE 
в усіх часових зонах 
демонструють моделі 
Transformer та LSTM. 
Зокрема, у пікові годи-
ни, коли точність прог-
нозу є найбільш кри-
тичною з точки зору 

балансування енергосистеми та фінансових витрат споживача, Transformer забезпечує середні 
відхилення у межах 2,3–2,8 кВт у прогнозуванні на одну годину та зберігає конкурентну перевагу і на 
горизонті 24 години. LSTM показує близькі результати, хоча дещо поступається за абсолютними 
величинами похибки. Натомість класичні моделі SSA та Holt–Winters у пікові інтервали 
характеризуються суттєво вищими похибками, що досягають понад 9–14 кВт, і демонструють 
систематичне зниження точності. У напівпікові години Transformer та LSTM також залишаються 
найбільш надійними, забезпечуючи MAE на рівні 1–4 кВт, тоді як SSA та Holt–Winters знову суттєво 
відстають. У позапікові години Transformer зберігає лідерство за коротким горизонтом прогнозу, хоча 
у разі добового прогнозування його точність дещо знижується внаслідок більшої складності 
моделювання нічних коливань навантаження. Загалом отримані результати підтверджують, що саме 
нейромережеві моделі, насамперед Transformer, забезпечують найбільш стабільну і високу точність 
прогнозування незалежно від періоду доби, тоді як класичні методи значно поступаються за усіма 
часовими зонами. 

Висновок. У дослідженні здійснено комплексне порівняльне оцінювання класичних та 
нейромережевих моделей прогнозування електричного навантаження непобутового споживача на 
горизонтах 1 та 24 години. Отримані результати дали змогу встановити специфіку застосування 
різних підходів залежно від часової глибини прогнозу та структури вхідних даних. Наукова новизна 
роботи полягає у проведенні всебічного аналізу точності та стабільності моделей із використанням не 
лише традиційних метрик (ME, MAE, RMSE, MAPE), але й додаткового дослідження розподілів 
похибок, що дало можливість кількісно оцінити стійкість прогнозів і виявити закономірності 
систематичних зсувів окремих методів. Вперше у межах задачі прогнозування навантаження 
непобутових споживачів продемонстровано, що модель Transformer забезпечує найвищий рівень 
точності та стабільності як у короткостроковому (1 година), так і у середньостроковому (24 години) 
прогнозуванні. У разі прогнозування на 1 годину найкращі показники точності отримано для моделей 
Transformer і LSTM, тоді як однофакторні моделі SSA та Holt–Winters істотно поступилися за 
точністю та стабільністю. Для горизонту 24 години Transformer продемонстрував найвищу якість 
прогнозування, а моделі М1 та LSTM показали відносну стійкість і прийнятну точність. Натомість 
методи Holt–Winters, SSA та M2 виявилися найменш ефективними як за значеннями метрик, так і за 
стабільністю результатів.  

Роботу виконано за держбюджетними темами «Забезпечення ефективного функціонування та 
розвитку розподіленої енергетики в Україні з використанням технологій мікромереж (шифр: РЕЖИМ-3)» та 
«Розвиток розподіленої енергетики в умовах ринку електричної енергії України з використанням технологій та 
систем цифровізації. Розділ 1. Організаційні та математичні моделі взаємодії учасників децентралізованого 
ринку електроенергії» (шифр. Цифровізація) (КПКВК 6541230). 
 
 
COMPARISON OF CLASSIC AND NEURAL NETWORK MODELS FOR FORECASTING  
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The study addresses the problem of forecasting the electrical load of an energy facility under conditions of high consumption 
variability. A comparative analysis of forecasting model performance is carried out for horizons of 1 and 24 hours. For the 

Таблиця 3 

 Горизонт 1 год Горизонт 24 год 

год T LSTM SSA HV M1 M2 T LSTM SSA HV 

7-8 1,06 2,86 12,65 4,86 3,78 6,24 5,11 2,84 3,00 4,36 

8-11 2,37 3,48 11,54 9,46 8,17 14,49 6,36 5,64 13,17 14,81 

11-20 3,66 3,76 21,51 24,03 6,32 11,97 2,60 4,91 8,93 8,87 

20-22 2,82 2,83 8,07 5,05 3,96 6,80 2,57 3,71 3,76 4,35 

22-23 1,96 2,18 11,08 4,53 3,45 7,43 2,10 3,70 3,02 3,73 

23-7 1,54 1,97 13,14 5,43 3,33 5,89 7,40 2,85 2,58 4,19 
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first case, the SSA, Holt–Winters methods, as well as LSTM and Transformer neural network architectures, were examined. 
For the second case, models with prior decomposition based on the Hilbert–Huang transform (model M1) and polynomial 
regression (model M2) were additionally considered. The quality of the models was evaluated using four metrics: mean error 
(ME), mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE). The 
results show that, for the 1-hour horizon, the Transformer model achieved the lowest MAE and MAPE values (2.54 kW and 
4.95%, respectively), indicating high accuracy. LSTM demonstrated similar accuracy, with the smallest forecast bias. The 
SSA and Holt–Winters models were significantly less accurate, though they showed better stability in avoiding large errors. 
For the 24-hour horizon, the Transformer model achieved the best results in both accuracy and stability (MAE = 3.61 kW). 
The M1 model, based on the Hilbert–Huang transform, showed balanced performance across all metrics, while LSTM 
achieved high absolute accuracy. Additional analysis of mean error distribution frequencies showed that Transformer and 
LSTM provide high densities of accurate forecasts within narrow error intervals, unlike SSA and Holt–Winters, which are 
characterized by systematic biases. The conclusions have practical significance for energy management tasks in microgrid 
conditions, particularly for operational load planning, loss reduction, and optimization of backup power sources. References 
16, figures 2, tables 3. 
Keywords: load forecasting; time series; microgrid; LSTM; Transformer; decomposition; Holt–Winters; SSA. 
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