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The analytical solution of the three-dimensional quasi-stationary electromagnetic field problem for a current located 
near conducting body with a flat surface is considered. The exact and approximate solution of the problem is presented. 
The exact solution has no restrictions on the external field configuration, physical properties of the medium, and 
frequency. The approximate solution is based on an expansion in asymptotic series and has limitations: for sinusoidal 
field, the solution is limited to frequencies above the lower limit; for pulsed field, the solution is limited by the initial 
time interval of the current pulse. Based on comparison of the results of exact and approximate calculations for 
nonuniform sinusoidal field at the interface between the media, the admissible value of the introduced small parameter 
is determined. For pulsed field the proposed choice of the limited time interval for calculating electomagnetic field 
using the asymptotic method is justified. References 29, figures 7. 
Key words: three-dimensional electromagnetic field, exact analytical method, asymptotic series expansion, skin effect, 
sinusoidal and pulsed fields. 

 
Introduction. Attention to the study of three-dimensional high-frequency sinusoidal and high-speed 

pulsed electromagnetic fields, taking into account eddy currents in conducting bodies is due to the need to take 
into account the influence of geometric and physical factors on the processes in the device elements of which a 
strong skin effect is appeared. It is enough to point out, for example, the technology of high-density pulsed 
currents to change the mechanical properties and control the stress-strain state of metal products [1-3], devices 
for high-speed forming technology using pulse magnetic field [4-6], equipment for high frequency induction 
heat treatment of metals [7 – 10]. Here, the search for the geometry of electromagnetic systems and the 
optimization of their parameters is of particular interest, which is associated with the significant laboriousness 
of computational procedures. These circumstances determine the need to develop of methods for 
electromagnetic field simulation, which provide high accuracy with a moderate amount of necessary 
calculations. Among them, analytical and numerical-analytical approaches stand out. 

Considering that with strong skin effect, the current and the field are concentrated in a thin surface 
layer of the conductor, approximate calculation methods are often used to determine the electromagnetic 
field. The most advanced methods are those based on the perturbation method [11, 12]. To determine the 
field in the dielectric region outside the conductor, an effective technique is to use the impedance boundary 
condition [13, 14], which establishes a connection between the components of the electric and magnetic 
fields tangential to the surface. The developed approaches are used in modeling electrodynamics problems 
taking into account the geometric and physical properties of real boundary surfaces [15, 16]. A detailed 
analysis of the application of various numerical methods using the impedance boundary condition in 
electrodynamics problems is presented in the book [12]. 

A distinctive feature of this paper is the use of an exact analytical solution for a three-dimensional 
sinusoidal field of an arbitrary system of external sources located near the conducting half-space [17, 18]. 
The exact solution made it possible to obtain a number of general features of the electromagnetic field 
formation and to propose justified approximate methods for solving problems based on the asymptotic 
expansion of functions of the exact solution [19 – 21]. 

The found asymptotic approximation for the frequency spectrum of potentials and field vectors has 
limitations in the low-frequency range. However, the theoretical estimate of the calculation accuracy [22] 

                                                            
 © Vasetsky Yu.M., 2021 
ORCID ID: * https://orcid.org/0000-0002-4738-9872  



4                                                                                   ISSN 1607-7970. Техн. електродинаміка. 2021. № 4 

must be confirmed, at least by comparing the actual results obtained using exact and approximate 
expressions. In addition, it is advisable to show the validity of the values of the approximate expressions for 
the intensities of the nonuniform field at the interface between the media, which , as shown, are determined 
only by the values of the field of external sources. 

Application of the asymptotic expansion for a pulsed electromagnetic field is based on a number of 
assumptions, which are associated with restrictions on the frequency spectrum. The validity of such 
assumptions must also be confirmed, including by comparing the calculation results of different methods. 

The aim of the work is to substantiate theoretical estimation of the applicability range of the asymptotic 
method for calculating three-dimensional quasi-stationary electromagnetic field based on the comparison results 
of calculating the approximate and the exact analytical solutions for sinusoidal and pulsed fields. 

1. Mathematical model. Exact analytical solution of the three-dimensional problem. The 
analytical solution of three-dimensional linear problem of conjugation of a quasi-stationary electromagnetic 
sinusoidal field at a plane interface between dielectric and conducting medium satisfies Maxwell's equations 
and boundary conditions. The boundary conditions include the equality of the normal components of the 
conduction density current in conducting medium and the displacement density current in dielectric medium. 

The solution is based on the known analytical 
solution of the problem for an emitting current 
dipole near the interface [23, 24]. In the quasi-
stationary approximation, a closed contour of 
arbitrary configuration located in a 
nonconducting and nonmagnetic medium, 
without loss of generality, was represented by a 
serial system of dipoles with a constant initial 
current  iI 0

  along the contour, where  is 
cyclic frequency, i is imaginary unit. The current 
contour is located in the dielectric medium near 
conducting half-space with electrical 
conductivity   and relative magnetic 

permeability  . The element of closed contour l  
is shown in Fig. 1. The solution was obtained 
without restrictions of the contour configuration, 

properties of the medium and the frequency of the field. It easily extends to the general case of an arbitrary 
system of contours, that is, an arbitrary external field and to an arbitrary current dependence on time  tI0  
using a Fourier transform. 

1.1. Exact analytical solution for sinusoidal electromagnetic field. If external sources are represented 
by a single closed contour with current, then the expressions for the complex-value amplitudes of the vector 

A  and scalar   potentials in the Lorentz gauge, the intensities of the electric E  and magnetic H  fields in 
the dielectric half-space can be represented in the form of the following contour integrals: 
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Here t  and 1t  are unit tangent vectors to the initial and mirror reflected from the surface contours at the 

source points M  and 1M ; the position of these points relative to the observation point Q  is determined by 

vectors r  and 1r , respectively; the axis z  is oriented perpendicular to the interface surface in the direction 
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of the unit vector ez. For arbitrary spatial contour, the unit tangent vector to the contour t = t|| + t has nonzero 
projections onto the vertical direction t = (tez)ez and onto the interface between the media   zz eettt || . 

Potentials and field intensities are determined by single function G  
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where the parameter    1011 2rr   is proportional to the ratio of the penetration depth of the 

uniform field   02  to the distance 1r ,  0J  is the Bessel function of the first kind of zero order, the 

denominator is     2

1 1 iiw  . 

Expressions (1) – (5) completely determine the quasi-stationary electromagnetic field of the 
sinusoidal current of the arbitrary configuration contour, taking into account the eddy currents in the 
conducting half-space. 

1.2. Exact analytical solution for pulsed electromagnetic field. Expressions (1) – (5) can be 
considered as the frequency spectrum of the potentials and vectors of the electromagnetic field, which is 
created in the dielectric half-space when current pulse  tI0  with frequency spectrum  iI 0

  flows along the 
contour. In this case, to obtain a solution in the form of time dependences, it is sufficient to perform the 
inverse Fourier transform. The corresponding expressions can be represented as follows: 

      































l

A dl
z

tV
tI

rr
t 10

1

10

4
t

tt
A , (6) 

       




l

z dltVt et1
0

4
, (7) 

       




























 
l

z dltV
t

tI

rr
t 1

0

1

10

4
te

tt
E , (8) 

      































 






l

A dl
z

tV
tI

rr
t 103

1

11
34

1
t

rtrt
H . (9) 

The functions  tVA  and  tV  are written as inverse Fourier transform as following 
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To describe the pulsed field, two functions  tVA  and  tV  are needed, and, however, each of them 

is still determined only by function  iG . 
2. Asymptotic approximation. The above expressions are valid for any parameter values. At the 

same time, computationally, the determination of the potentials and vectors of the electromagnetic field, 
especially pulsed field, is associated with difficulties that are caused by the need to calculate improper triple 
integrals. Therefore, simplification of calculations is an important task. For this purpose, an approximate 
asymptotic method can be used, which is valid in the case of a strong skin effect [19, 22]. 

2.1. Asymptotic approximation for frequency spectrum. To obtain approximate expressions, it is 
sufficient to use the expansion of the function G  in asymptotic series. The expansion is carried out according 
to a small parameter 11  , which in this case reflects a significant degree of remoteness of the external field 

sources 1r  compared to the penetration depth  . It means that the asymptotic expansion is valid in the case 
of a strong skin effect, in which the penetration depth of the field is small not only with respect to the 
characteristic dimensions of conducting body, but also of the entire electromagnetic system, including the 
distance from the surface of body to the external sources. The small parameter value determines the 
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limitation on the field frequency. The frequency  2f  must be large than the limit value 

 22
102 mm rff  , where m  is the chosen permissible value of the small parameter. 

A feature of asymptotic series is that they are divergent series. In this case, the function G  is 
expanded into asymptotic power series of the Poincaré type [25, 26] with an error that can be made 
arbitrarily small by choosing 01  . With an increase in the number of terms in the series, the error in the 
approximation of the function first decreases, reaching a minimum, which depends on the value of the small 
parameter. Then the approximation error increases. In addition, each term of the asymptotic series is 
determined with an error, the magnitude of which depends on the value of the small parameter and the 
number n  of the term in the series. Therefore, for each term of the series, there is also a limitation on the 
lower value of the frequency nff  , which increases with increasing number of the member of the series n . 
In this regard, with an increase in the value of the small parameter, the total number of considered members 
of the series N  decreases and, accordingly, the total approximation error increases. 

The asymptotic series for the function G  takes the following form [22]: 
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Taking into account (12), expressions (1) – (4) can be written as follows: 
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Here, it is taken into account that pir  11 , where iiip  0  is propagation constant, ip   is 

surface impedance. 
In the case of strong skin effect, the distribution of the electromagnetic field at the interface between 

the media is of great importance. The electromagnetic field on this surface defines such characteristics as the 
energy flow of the electromagnetic field into the conductive body, the surface density of Joule heat release in 
the surface layer, the magnetic pressure on the surface of the body. Expressions (15) and (16) for the 
intensities of the electromagnetic field at 0z  are greatly simplified. Here at strong skin effect the 
electromagnetic field is determined only by the known distribution of the field of external sources at the 
boundary without the need to solve additional equations [20, 22]: 
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where 0H  is the magnetic field intensity of external sources in dielectric medium at the interface; ||0H  and 

0H  are the tangent and normal components of the field, respectively; it is accepted a-1 = –1. If the external 
field is created by a single current contour, then 
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2.2. Asymptotic approximation for pulsed field.  To find pulsed electromagnetic field in the dielectric 
half-space, it is necessary to determine the functions  tVAn  and  tV n  for given time dependence of the 

current  tI0 . The values  tVAn  and  tV n  are determined by expressions similar to (10) and (11), with 

replace  iG  by  iGn . 
It is essential that each term of the asymptotic series is represented as a product of two functions, one 

of which depends on the frequency, and the other depends on the properties of the medium and the 
coordinates of the vector 1r  
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Here the functions ng  are as follows 
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Taking into account the simple frequency dependence of each term in series (21), we will solve the 
problem in two stages. First, we find the time dependence under the action of unit current pulse  tT  
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At the next stage, using the Duhamel integral, we will find functions  tVAn  and  tV n  for an arbitrary 

dependence of the current on time  tI0 . 
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Since for all   00 An , then for the function  tVA  which determines the vector potential and 
magnetic field intensity, we apply the Duhamel integral in the following form [28] 
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When calculating the scalar potential and electric field intensity, it is necessary to take into account 
that at 0t  the zero term of the series   21

0 ~ 
 tt  increases indefinitely. Therefore, to eliminate the 

singularity of the integrand, we will apply the Duhamel integral form, in which time derivative of current is 
used 

             
    









 





































N

n

t
n

t

n
t

t

d
d

dI

n

g
d

d

dI
IttV

0 0

210

0

0
0 212

0 . (25) 

Here, it is necessary to impose a limitation on the dependence of the current on time near 0t . If the current 
changes according to the power law   kattI 0 , it is necessary 21k . An even stricter restriction is 

associated with the first two terms in (8), for which it is necessary 1k . 
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In the asymptotic approximation, the limitation on the field frequency makes it necessary to limit the 
frequency spectrum of the pulsed field in the low-frequency range. For current pulse this is due to limitation 
of the time interval over which the field can be calculated. For example, when a unit current pulse flows 
along the contour, the presence of low frequencies in the spectrum leads to an unlimited growth of functions 

 tAn  at t , while the vector potential and magnetic field intensity should tend to a constant value. The 

expressions will be valid until a certain characteristic point in time cc ft 1 , for which, in fact, the previous 

condition is satisfied   12 011  rtc . The assessment of the allowable time intervals can be 

performed as follows: for the entire calculation mm ftt 1  and for each term of the series nn ftt 1 . In 

the results below, the current is normalized to the maximum value     max00
*
0 ItItI  . 

3. Comparison of exact and approximate calculation. 
3.1. Comparison of calculation results for sinusoidal field. The value of the small parameter 1  

depends on the distance 1r  and, accordingly, changes depending on the relative position of the point 1M  on 

the mirrored contour and the observation point. For specific contour the parameter 1  takes its greatest value 

at the smallest distance 1r , when the observation point is located at the interface between the media on 
vertical axis passing through the point on the contour. Therefore, the largest error will occur when the field is 
calculated at the interface between media. In this regard, we compare the results of calculations using exact 
and approximate expressions for the field on the surface of the conducting half-space. 

The analysis of the calculation errors of the 
sinusoidal field depending on the value of the parameter 1  

for specific points 1M  not related to the configuration of 
the contour was studied in sufficient detail in [22]. 
Therefore, here we will compare the calculation of three-
dimensional electromagnetic field for a model of an 
electromagnetic system with circular contour with 
sinusoidal current [3] (Fig. 2). The contour lies in a plane 
normal to the interface between the media. The geometric 
dimensions are as follows: radius of the contour 

m0.05R , distance from the center of the contour to the 

surface m0.06H , respectively, the minimum distance from the contour to the surface m0.010 h . The 

electrophysical properties of the medium correspond to those of aluminum   1,m17,3  . 
Frequency is variable. 

The calculation was carried out for all components of the electric and magnetic field intensities 
according to exact (3) – (5) and approximate (17) – (20) expressions. The results are presented for the 

normalized component values of the complex-value amplitudes of the electric  Ekkk iEE  exp**  and 

magnetic  Hkkk iHH  exp**  fields, where zyxk ,, . The argument of the complex-value amplitude 

shows the phase shift angle relative to the phase of the contour current within the limits 22   (the 
“–” sign in front of the complex-value amplitude modulus is equivalent to phase change by  ). The 

normalized values of the field vectors are defined as follows *00

4
EE 









I
, *

0

0

4
HH 




h

I


 . 

In Fig. 3 for the point on the surface 0,0  yx  closest to the contour, nonzero normalized values 

of the components of the electric *
xE  and magnetic *

yH  field intensities are presented depending on the value 

of the parameter   0min1 2 fr , where in this case the minimum distance of all 1r  is 0min1 hr  . 

Modules of complex-value amplitudes for calculation by exact (solid curves) and approximate (dashed 
curves) expressions are shown in Fig. 3 a, c. The arguments for the complex-value amplitudes are given in 
Fig. 3 b, d. 

 
 

 

,  

=0, =1 
x 

y 

z 

Q 

M R 

h0 

I0 

Fig. 2 
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From the presented comparison 
results, it can be seen that for the values 
of the small parameter 3.0 m , the 
results for the moduli of the field 
vectors practically coincide. For the 
arguments of complex-value field 
vectors the deviation of the results 
occurs at a slightly smaller value of the 
small parameter, and also at values 
close to the indicated value. In this case, 
for example, for aluminum, the 
calculation with sufficient accuracy can 
be carried out for the field frequencies 

Hz38 mff . 
For other observation points on 

the interface between media with large 
minimum distance to the contour 

0min1 hr  , a similar limiting value of 
the small parameter also takes place. 
This circumstance is illustrated in Fig. 
4 for point on the surface 

m01.0,m.0250  yx  for which the 
minimum distance to the contour 
increases to a value m018.0min1 r . At 
this point all components of the field 
intensities are not equal to zero. 
Therefore, in Fig. 4 shows the results of 
comparing calculations for all field 
components except for the component 

zE , which is completely determined 
only by the induced electrical field of external sources [17]. 

From the point of view of the possibility of using computationally simpler asymptotic expansion, the 
main conclusion is that for all components of the electromagnetic field, the results practically coincide with 
the calculation using exact expressions up to the value of a small parameter 3.0m . In addition, it is 
essential that the introduced small parameter, which combines several quantities, is a single parameter that 
indicates the limiting value for the application of approximate asymptotic calculation method. So, for the 
considered point on the surface, which is at a greater distance from the contour m01.0m018.0 01  hr , 

the limiting value of the field frequency decreases to the value Hz7.11mf . 
3.2. Comparison of calculation results for pulsed electromagnetic field.  Since in the asymptotic 

expansion method the lower frequency limits increase with an increase in the number of term in the series, 
then in the initial period the largest number of the terms in the series is taken into account and the field can 
be calculated most accurately. The validity of the proposed estimate of the time intervals for the integrands 
in the contour integrals is carried out on the basis of comparing the calculation using exact expressions (5) – 
(7) for functions  tVA ,  tV  and approximate expressions (24), (25). In addition, we will compare the 

results of calculating the electromagnetic field created by specific contours with pulsed current. 
It is convenient to analyze expressions using dimensionless parameters. The basic frequency 

  1

0
2 

 hfb  (and accordingly the time bb ft 1 ) is determined as the frequency when the penetration 
depth is equal to the vertical coordinate h  of a contour element. In this case, the normalized time is 
related to the value of the small parameter as    21

2
1

* 2 hrtft b  . The contour current in the results 

below is normalized to the maximum value     max00
*
0 ItItI  . 
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Fig. 5 illustrates a comparison of the exact and approximate normalized values of the function 
    max0

* ItVtV AA   for an exponentially decaying current pulse, which at the initial moment 0t  takes on a 

maximum value by jump. At the point on the surface under the contour element (Fig. 5 a) at hr  1,0  and 

1  for the chosen permissible value of the small parameter, for example, 3.0m  the limit value of the 

considered time interval turns out to be 18.0* mt . The insignificant deviation of the calculation results at 

12.0~*t  practically disappears when the distance 22
1  hr  increases (Fig. 5 b). Here, for the same 

value of small parameter 3.0m , the time intervals taken into account turn out to be much larger: 

36.0,1  mth  and 8.1,3  mth . Deviations between the results of exact and approximate 
calculations within the allowable time intervals are insignificant and are not reflected in the graphs. It 
follows that, when integrating along the contour using the asymptotic approximation, the calculation error is 
mainly influenced by the calculation of the integrand at the source point closest to the observation point. 

         
Fig. 5 

Unlike the function  tVA  for calculating the function  tV , which determines the time dependence 

of the scalar potential and the electric field intensity, the current pulse should not change by jump. 
Otherwise, the field intensity will take on infinite value. G. Knopfel [31] also points out incorrect physical 
consequences when using models with a jump in the external field at the initial moment of time. For this 
reason, current pulse was chosen in the form of the difference of two exponentially decaying functions 

   **
2

**
1*** tt

m eeItI   , which at 0* t  changes proportionally to time     **
1

*
2

**** :0 tItIt m  . 
The results of comparing exact and approximate calculations of the normalized values of the function 

     bfItVtV max0
**

   at a point on the surface 0,0 z  for some current pulses are shown in Fig. 6. It is 

seen that the approximate method of asymptotic expansion gives very insignificant deviations in comparison with 
the exact one in the time interval from the beginning of the current pulse action to the limiting value 18.0* mt . 
For the pulses in Fig. 6 b, c the values practically coincide over the entire time interval. 

         
Fig. 6 

 
Since the small parameter 1  is function of points on the contour, the permissible calculation time 

interval also changes when integrating along the contour. For the entire contour, it is advisable to choose the 
minimum value of the permissible time interval, which corresponds to the minimum distance between the 
mirrored contour and the observation point. In this case, the accuracy of the field calculating for the entire 
contour will be higher than for the contour point with the greatest 1 . 
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The noted circumstance in Fig. 7 is illustrated by the time dependences of the vector potential and 
the electric field intensity for pulsed current. The results for the vector potential when pulsed current 
   ***

0 50exp ttI   flows along an elliptical contour are presented. The contour geometry and orientation 
relative to the boundary surface are given by the following parametric equations: 
 ,sincos,sin,coscos  aHzbyax  (26) 

where the parameter   changes within  20 ;   is the tilt angle of the plane in which the contour lies 
relative to the interface between the media; H  is the height of the location of the ellipse center relative to 
the boundary surface. The relative sizes of the semiaxes of the ellipse and tilt angle are chosen 

2,1  HbHa  and 060 . The contour is shown in Fig. 7 a on the left. The vector potential is 

determined at the point  0;0;5,0HxQ  marked in the Figure with a cross, where the distance from the 

contour to the interface is minimal 134.0*
min1 r . At this point, for the chosen geometry of the contour, the 

vector potential has only a tangent component, parallel to the axis y . 

x Q 

x*  

z*  

y*  

            
 

   a       b 
Fig. 7 

The calculation results obtained by approximate expressions (13) are shown in Fig. 7, a with a solid 
curve. Individual points show the results of calculations using exact analytical expressions (1), (5). The 

normalized values of the vector potential are determined in accordance with the expression *0

4 Q
m

Q A
I

A



 . 

It can be seen from the given dependences that the values of the vector potential calculated by the 
approximate expression coincide with the calculation by the exact expressions from the beginning of the 
pulse action to its normalized value 2,0* t . At this time interval, the calculation accuracy is higher than for 

the function  ** tVA  at the point of the contour located closest to the interface between the media (Fig. 5, a). 
The electric field intensity of the circular contour (Fig. 7, b) with pulsed current 

      ****
0 100exp50exp4 tttI   was determined at the interface between the media at the point closest 

to the contour. The contour, as before, is located in a plane perpendicular to the boundary surface. The ratio 
of the circle radius R  to the distance H  from its center to the surface is 833.0HR . In this case, the 

minimum distance of the contour from the surface is equal to 167.0*
min1 r . It can be seen that for the 

selected current pulse, the induced electric field decays before the maximum time value 18,0* mt is reached, 
and throughout the entire transient process, the exact and approximate values practically coincide. 

Comparison of the results of calculating the pulsed electromagnetic field by approximate and exact 
expressions confirms the validity of the choice of time intervals during which the use of approximate 
asymptotic method is permissible. 

Conclusion. The presented analytical expressions for calculating the potentials and intensities of 
pulsed electromagnetic field are based on the exact analytical solution of the three-dimensional quasi-
stationary problem for calculating of the field in the system "current contour - conductive half-space". There 
are no restrictions on the geometry of the contour, the physical properties of the medium and the frequency, 
and hence the dependence of the pulse current and the field on time. 

In the case of a strong skin effect, the presented approximate expressions for nonuniform sinusoidal 
electromagnetic field make it possible, without solving additional equations, to find the electric and magnetic 
field intensities at the interface between the media, having only the known field distribution of external 
sources at the interface. Comparison of the results of exact and approximate field calculations made it 
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possible to establish the limit value of the introduced small parameter, up to which the asymptotic expansion 
of expressions for the field at the interface is valid. 

Since for pulsed field the exact analytical solution in the frequency domain involves the inverse 
Fourier transform and its obtaining is associated with calculating triple improper integrals, then under the 
strong skin effect it is reasonable to use the asymptotic expansion method for pulsed processes. It is shown 
that the calculation of the vector potential and the magnetic field strength can be performed for discontinuous 
time dependency of current. On the contrary, in calculating the scalar potential and electric field intensity, 
the finite rise time of the external field must be taken into account. Due to in the method of asymptotic 
expansion the values of the lower  frequencies cutoff increase with increasing number of the series term, the 
field in the initial period can be calculated most accurately. Since the current pulse usually changes most 
rapidly and reaches its maximum values over a relatively short period of time, so during this, most important 
stage, the electromagnetic field is determined. 

Comparison of the results of calculating the pulsed field by exact and approximate methods shows a 
high accuracy of calculations using the asymptotic expansion within the proposed time interval. Taking into 
account a significant reduction in the amount of calculations, the approximate method is effective method for 
calculating the distribution of the three-dimensional field. 
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ТОЧНИЙ АНАЛІТИЧНИЙ І НАБЛИЖЕНИЙ АСИМПТОТИЧНИЙ МЕТОДИ РОЗРАХУНКУ 
ТРИВИМІРНОГО ЕЛЕКТРОМАГНІТНОГО ПОЛЯ ПОБЛИЗУ ЕЛЕКТРОПРОВІДНОГО ТІЛА З 
ПЛОСКОЮ ПОВЕРХНЕЮ 
 
Ю.М. Васецький, докт. техн. наук 
Інститут електродинаміки НАН України,  
пр. Перемоги, 56, Київ, 03057, Україна 
e-mail:  yuriy.vasetsky@gmail.com 
 
Розглядається аналітичний розв’язок задачі розрахунку тривимірного квазістаціонарного електромагнітного 
поля струму, що протікає поблизу електропровідного тіла з плоскою поверхнею. Представлено точний і 
наближений розв’язок задачі для синусоїдального та імпульсного полів. Точний розв’язок не має обмежень по 
конфігурації зовнішнього поля, електрофізичним властивостям середовища і частоті поля. Наближений 
розв’язок заснований на розкладанні виразів в асимптотичні ряди і має обмеження: для синусоїдального поля 
частотами вище нижньої межі; для імпульсного поля – початковим проміжком часу дії імпульсу струму. На 
основі порівняння результатів точного і наближеного розрахунків для неоднорідного синусоїдального поля біля 
межі поділу середовищ визначено допустиме значення введеного малого параметра. Для імпульсного поля 
обґрунтовано запропонований вибір обмеженого проміжку часу розрахунку з використанням асимптотичного 
методу. Бібл. 29, рис. 7. 
Ключові слова: тривимірне електромагнітне поле, точний аналітичний метод, розкладання в асимптотичний 
ряд, скін-ефект, синусоїдальне та імпульсне поля. 
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