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An identification procedure of mathematical model of turbine generator unit in the presence of uncertainty is studied
for using in the interconnected robust control automated system. The procedure is based on “worst-case” identification
approach. The controlled object is modelled by the matrix transfer function with additive uncertainty. The identification
consists of two stages: first is to identify transfer function with nominal parameters with the use of prediction error
minimization algorithm, second — to determine weight function in additive uncertainty model using finding the worst-
case log-magnitude curve of uncertainties. Identification is performed in active way, determining datasets for each
control channel from individual experiments. A linear frequency-modulated signal is selected as the input test
disturbance. A simulation model of the controlled object is constructed and the numerical experiment is conducted
using the identification procedure. References 11, figures 7.
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Ensuring the reliability of the turbine generator unit (TGU) in the electric power system is an actual
task. One of the ways to solve it is to improve the existing automated control systems and to create new ones
based on modern principles. One of the key parts of TGU is its shaft, whose damage can lead to premature
decommissioning of the TGU and serious technical accidents [8].

In order to ensure reliable operation and permanent monitoring of the TGU shaft condition, the authors
have developed the automated system of interconnected robust control (ACS IR TGU) [2, 3]. As described in
[3], ACS IR TGU performs the functions of interconnected robust control of TGU shaft rotation; monitoring
of fatigue damage of the shaft material; control of the operation of special equipment related to damping of
torsional vibrations of the TGU shaft, namely devices for compensation of torsional oscillations, which are
able to create additional torque on certain sections of the shaft line. These functions are proposed to be
implemented using separate subsystems, what are reflected in the functional diagram of the automated
system, which is given in [3].

The function of controlling the TGU shaft rotation in the system is carried out using an interconnected
robust controller, which synthesis procedure is described in [1]. The controller implements interconnected
control by coordinating the operation of the automatic turbine speed governor (GOV) and the automatic
voltage regulator (AVR) of TGU. The controller also has robustness properties with respect to the following
types of uncertainty: unmodeled dynamics due to the linearization of the controlled object model,
unaccounted change of the parameters of the controlled object components in relation to different TGU
operating modes, as well as the gradual change over time of such parameters relative to the initial technical
qualities, determined during the experiments at the factory, as a result of physical deterioration of the
technical object.

As shown in [1] by numerical simulation, the result of using such a controller is reducing shaft
oscillations relative to the power system and mechanical stresses in its cross sections with robustness of
results towards parameter variation of controlled object mathematical model (MM). In the controller
synthesis procedure it is used MM with nonparametric additive uncertainty, which includes all types of
uncertainty of the considered system. The robust properties of the controller allow achieving the stability and
the specified control quality only within the fixed uncertainty boundaries which can change over time due to
physical deterioration or modernization of controlled object. For this reason, the controller needs to be
reconfigured periodically, subject to significant changes in the MM uncertainty limits of the control object.
To apply such an adaptive-robust approach to the design of the control system, which requires periodic
readjustment of the robust controller, the control system provides a subsystem for identifying the uncertain
model of the controlled object. The subject of these studies is the application of identification methods for
systems with uncertainty in the algorithms of the identification subsystem of ACS IR TGU.
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The task of identifying uncertain models of controlled objects has arisen in connection with the
development of robust control methods. The classical identification methods do not fully meet the needs of
robust control problems due to the fact that they can only take in account the signal uncertainty by including
additive stochastic noise signals, whereas there are many other types of uncertainty in robust control methods
[6]. For example, there are uncertainties due to simplifications of the control model that have non-stochastic
nature. And even in the case of stochastic type of signal uncertainties, only the uncertainty boundaries of
these signals in specific spaces are required for the synthesis algorithms of robust controllers, and
information about the probability distribution of signal error is not used.

The active phase of research on methods for identifying systems with uncertainty came in the 1990s,
when robust control methods developed rapidly [7]. These methods have been called "non-stochastic" or
"worst-case" identification. A common feature of these methods was that the various noises in the systems
models were considered non-stochastic, but limited in some space.

Many tasks remain unsolved today, and methods for identifying models of systems with uncertainty
continue to develop, in particular in the way of combination of stochastic and non-stochastic approaches [7],
as well as creating methods that optimize experimental design and reduce the computational complexity of
algorithms. For example, in [4] new approaches to identification of models with parametric uncertainty have
been proposed, the application of which allows to reduce the number and duration of experiments while
improving the accuracy of the obtained estimates.

In this paper, algorithms of the identification subsystem of ACS IR TGU are designed based on the
worst-case methodology, which most corresponds to the uncertainty type in TGU MM chosen for this study.

The main results. In the study the authors use the complete non-linear TGU MM in the form of the
combined controlled object (CCO), including generator (G), turbine (T), exciter (E), AVR, GOV, and test
electrical system (TES) (Fig. 1). The model was obtained on the basis of the physical principles of the CCO
components using the Park-Gorev equations, the detailed description of the model and its parameters is given
in [1]. We can express the consolidated mathematical model of CCO as follows:

et N 2 x(0)= F(x(0) + Bu(0),
V=d dt
— (1)
Gov i ¥() = Cx(t)+ Du(®),
I where x is the state vector; F (x) is the nonlinear vector-valued
G+TEM ' function; y=w-a,, is the vector of observations: deviation
AR cco_‘: of the generator rotor rotational speed; B, C, D are the

_E—_— e = = = = = = = = = = -

. . . T .
matrices with constant coefficients; u = (uGOV u AVR) is the

Fig. 1 control vector consisting of the control signals of additional

stabilizing inputs to GOV and AVR.
For the synthesis of the controller according to the procedure described in [1], the model (1) is
linearized around the operating point with fixed values of active and reactive power P and Q corresponding

to certain values of the load angle ¢ and the generator voltage V, . The order of the linearized model is

reduced by the Schur method [9, 10]. The corresponding matrix transfer function G of the linearized CCO
system is expressed in the following form:

G(s)=C(sI-A)'B+D=(G'(s) G(s)). 2)

On the basis of the matrix transfer function G of the CCO linearized system it is formed the CCO
model with additive uncertainty:
G ()= G(8) + AW (5) 3)

where G(s):(G(”(s) G(z)(s)) is the nominal transfer function of the non-perturbed controlled object,

Az(A“) A(z)), ||A||w<1 is the normalized uncertainty,

is the norm in the RH_ space, and

DR
W= [WO ) 2)] is the weight function that also belongs to the RH_ space. The additive term A(s)W (s) to
w

the nominal function of the controlled object includes all the types of uncertainty mentioned above.
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This description of the controlled object (3) is used for applying the synthesis algorithm of the Hoo-
suboptimal interconnected robust controller of TGU shaft speed, which reduces the dangerous torsional
vibrations of the shaft by coordinating the action of GOV and AVR [1].

The task of identifying the CCO model with uncertainty (3) is to determine the transfer functions
G(s) and W (s) from the experimental data, which are presented in the form of time discrete series. Let the

system being identified have, in the general case, Nu control inputs (u;, uy, ..., uy,) and one output y.
Suppose we also have a set of parameters (p1, p», ..., pxp) of the original complete CCO model (1), which are
sources of uncertainty and may vary over a range of values. The range of variation of these parameters by
virtue of the accepted model should be expressed in the form of nonparametric uncertainty in the CCO
model, in other words, the task is to find the limits of nonparametric uncertainty that correspond to the
variation of these parameters.

First consider the problem of identification of the nominal transfer function G(s). We will identify the
function in the form:

G(s)=[G"(s) .. GM(9)].G"(s)= (Za(’) ‘] Zb,ﬁf’sk,izl...zvu. (4)

Identification is performed in active way, identifying datasets for each control channel from individual
experiments. A linear frequency-modulated signal, also called a "chirp" signal, is selected as the input test
disturbance [2]. Identification procedure is carried out by time discrete series using one of the "direct”
methods, namely the method of minimizing the prediction error (PEM) [5].

The prediction error minimization method is intended to identify both linear and nonlinear systems
[5]. In this method, the output signal is represented as follows:

(k)= (qfl)u(k)w(k)
A(g™)

where ¢~' is the shift operator and ¢~'y(k)=y(k—1); u(k) is the input signal, y(k) is the output signal;

n(k) is the noise signal; polynomials 4 and B have the coefficients of the denominator and the numerator of
the transfer function G(s) of the system to be identified.
The estimate of the noise signal is expressed by unknown polynomials ' and H, which are also

. ) determined during the identification process:
Fixing the nominal parameters of O
the CCO model (»™. p?. ... Ak |k —1) = (1 _H(q )J (k).
v F(g™)
< i=1.i<=Nui Then the estimate of the outputlsignal is expre?sed as:
v ylk k=) =( e J )+ 5 k).
Generating and capturing input
data: linear frequency-modulated The prediction error is equal: e(k) = y(k)—y(k|k-1).
v Optimization criterion for finding the coefficients of polynomials
- . A, B, F, H:
Obtaining from an experimental or N
simulation computer model the fk)= Ze,f (k) > min . %)
output data as discrete time series =
7 In order to minimize the function of the optimization
criterion (5), it is advisable to use the Gauss-Newton method [5].
Identiﬁcat'io.n gsing the prefliction As a result of applying the method for each control channel,
error minimization algorithm we obtain the values of the coefficients a!” and b of each
(PEMz;;Ezlf;ﬂf;?j:ﬁé(l,-?nts of element of the nominal transfer function G(s) from (4).
— ‘ The schematic representation of the identification algorithm
| of the nominal matrix transfer function of the system is shown in
Fig. 2. The identification procedure begins with the fixation of the
Obtaining the transfer function nominal values of the controlled object varied parameters. Then
G(s) = (GP G? ... gN the cycle starts according to the number of Nu control channels of
the system: the input test linear frequency-modulated signal of the
Fig. 2 fixed frequency range is sent to the input of the current channel of
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the cycle, the values of input and output signals are registered at time points with the selected step.
According to these data, the matrix element of the nominal transfer function corresponding to the current
control channel is identified by the PEM method described above. At the end of the cycle, we have a fully

identified transfer matrix function of the controlled object.

To determine the weight function W, we identify several G,., functions in different modes
corresponding to certain parameter values (pi, p», ..., pup) in the neighborhood of nominal values. The
parameters can be changed by some regular grid, but if the number of parameters is greater than 2, it can be

used a set of randomly generated parameter vectors within the
boundaries of their change. Then we construct a set of log-
magnitude curve differences, identified with specific parameter
values and nominal functions separately for each i-th control

channel G;’Zrt( )—G”’, and determine the maximum log-
Prs-sPrp

magnitude curve of this family as an upper envelope [9] (Fig. 3).
By the determined maximum log-magnitude curves, we

restore the minimum-phase transfer functions w'”(s), by which we
build the matrix weight function
W(s)=diag (w(l) (s) .. w™ (S)) .
The identification algorithm of the matrix weight function of
the system is shown in Fig. 4.

Fixing the nominal parameters of the
system model (p", p@,... p*")

i-th control channel

Magnitude
(Db)

50

-100

-150

Frequency

(rad/s)

10

10'

Fig. 3

The algorithm starts with fixed CCO nominal
parameters, after that the loop executes with the
parameters values within their variation range. As

already mentioned, these values can be computed both

For parameter sets

within their change limits

nominal transfer function G

Constructing the difference between log-
magnitude curves the perturbed and the nominal
function

Determining the upper envelope of the log-
magnitude curves for each control channel

Obtaining the weight function
W(s) = diag(w w® ... w®)

@O, p2,... p") space of parameter values :
distributed in a limited area. The next step is to
determine the parameters of the perturbed transfer
function G

Identification of the perturbed G, transfer identifying the nominal transfer function, shown in
function by the algorithm of identification of the Fig. 2. After that we find the difference G, -G and

according to

equations were linearized
parameters of the system: the coefficient Ky, of AVR
and the resistance of the transmission line Xtgs, which
depends on the length of the line /rgs. Assume that the

that

basing on a regular grid or on set of points in the

are uniformly

the algorithm for

and

the

build the log-magnitude curve of each element of this
v difference. At the end of the loop we have Nu curves
in the graph, an example of such a graph is shown in
Fig. 3. For each i-th graph we find a discrete set of
points in the upper envelope of the family of log-
magnitude curves, according to which we calculate
[ the corresponding element of the weight function,
v solving the Chebyshev approximation problem with
the minimax optimality criterion for finding the
coefficients of the minimum-phase transfer function to
fit the log-magnitude curve [11].

7 According to the described algorithm, the

0o o — authors carried out identification of the CCO transfer
Restoring ww'™ ... w™ as a minimum-phase function of the TGU model consisted of K-200-130
functions that correspond to the upper envelopes turbine and TGV-200 generator. The sources of
as log-magnitude curves uncertainty were fixed as: the coordinates of the

3 system state x,,, in the neighborhood of which the

following

nominal transfer function of the system G(s) in (1)

Fig. 4
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corresponds to the nominal TGU operating mode, which corresponds to the nominal value of the active
power P,,, and the value of the reactive power Q,,, according to the nominal value of the power factor
COS@uom- Also, we fix the nominal values of the parameter K, =100. Range of variation of parameters:

}; K,, €[50...150].

X

xe[xpzo,

In system (1) there are two input control signals ugoyv and uayr and one output signal y. That is, the
system has two control channels "ugov—y" and "uavr—".

As part of the study, using the simulation scheme in the Simulink graphical programming environment
of the MATLAB software package, it was generated a set of input data in the form of "chirp" signal and
corresponding output data (Fig. 5), by which the nominal transfer function G(s) was identified according to
the algorithm shown in the Fig. 3:

|
<Rotor angle desiston d_thets (rad)= dw
ldenti <Fotor speed wm (pu)>
dteta "l <Fotor speed deviaton dw (pul>
— wm <Stator voltage v (pul>
L,. wraf Pm <Stator voltage v (pul>
/UW| | UARCHD »
Chirp Signal Pn
Tur bine+AR CHOH+
rotor shaft
i o
White Noise Va
Signal o[ Ann Transformer
o Vref W < m e | {Two Windings)
M UART M 1 %
P |dent2
A AR

Multiport .
Switch 2 Fig. 5

G(s)=(G"(s) G?(), (6)
where
—-0.00019455* —0.002697s” +2.9445 —3.359
st +13s +185.95% +16155 + 6321

0.033545° —0.8643s* —7.0215—173.6

G (s)= . i : :
s +5.6275° +219.957 +700.15 +1.125¢04

L G(s) =

A comparison of the identified function G(s) with G,,(s) is performed, where G, (s) was obtained
from the TGU complete mathematical model (1) by linearization and order reduction from 14 (Ge,14(5)) to 4
(Gireor4(s)) by the Schur method [9, 10]

Gteorl4 (S) = (Gt(elz:r14 (S) Gt(eiz‘M (S)) s (7)

37135" +7.966€06s° +2.685¢09s* +3.4el12s” +2.235¢e14s° +3.393el5s° +2.2el 65" +
+8.406e165” +1.1el 7s* + 4.445¢165 —1.018e05
5" +3161s" +2.919¢065" +1.686e09s'" +1.003e12s'" +7.718¢13s’ +2.091el55° +
+3.413el16s’ +4.154e175° +3.678¢e18s” +2.218¢19s* +8.809¢19s” +1.926€20s” +
+1.116€20s +1.706¢19

where G (s)=

teor14
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—2645s" —1.827¢065s" +2.892¢085° —5.98¢1 1s* —7.238¢13s” —2.917¢l5s5° —4.902¢165° —
—3.75e17s* =1.205¢18s> —1.06e18s* —1.954¢17s + 7030

G2 . (s)=
s () s 431615 +2.919¢065' +1.68609s' +1.003¢12s'"° +7.718¢13s° +2.091el 55° +
+3.413e165” +4.154¢17s° +3.678¢18s° +2.218¢19s* +8.809¢19s° +1.926220s> +
+1.116€20s +1.706e19
Gs($)=(G4(5) G (5)), ()
where
_ 3 2 3_ 2_ _
GO (5)= 0.005128s” +0.11425" +1.2975 +1.769 (S):o.ooomzs 0.65645> —28.065 —9.782

s* +6.8495° +163.85” +766.85 +4555 " s* +6.849s” +163.8s + 766.8s + 4555

The comparison was performed in the frequency range and showed the equality of the log-magnitude
curves of all functions with sufficient accuracy in the operating frequency range. Fig. 6 shows a comparison
of log-magnitude curve of the identified function G(s) and those calculated using TGU mathematical models:
complete of 14™ order and simplified of 4™ order.

Then the weighting function W was determined by the given above algorithm shown in Fig. 4 using
the input linear frequency-modulated signal. In Fig. 7 log-magnitude curve of I is represented by a dashed

(D (2)

line. Using this curve, the minimum-phase functions w*’ and w

function W consists of:

were restored, which the matrix weight

W (s)=diag(w"(s) w®(s)), ©)
wO(s) = 1.689¢(—06)s* +0.001386s° +0.01571s”> +1.009s + 2.847
s 4+0.6621s° +231.35% +70.35 +1.302¢04 ’
where
WO (s) = 3.617e(—05)s* +0.01396s° +0.59765> +35.365 +36.94
s*+5.511s° +227.1s° +568.7s +1.251e04 '
uGOV-y uGOV-y
0
. Magnitude Magnitude
(Db) (Db)
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-100 S
Ident Frequency Frequen.;ﬁy-.
150 L = o) , 150 : (od?) ,
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BOE e 50 |
~J :_
-100 - -100 "
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Fig. 6 Fig. 7
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Thus, the above algorithms of determining of the matrix transfer functions G(s) and W(s) can be
applied in the operation of the identification subsystem of ACS IR TGU for identification of CCO with
uncertainty in form (3) for initial adjustment of the interconnected robust controller as well as for its
readjustment during the operation of the control system in the case of a significant change of the boundaries
of uncertainty in the CCO MM.

Conclusions.

The algorithm for identifying TGU as a controlled object has been developed based on the “worst-
case” principle of identifying models of uncertain controlled objects. The simulation has been performed to
generate a set of input and output data and to further apply the developed identification procedure. On the
basis of these computational experiments, it is shown the approximate equality of log-magnitude curves of
the identified nominal COO transfer function of the model with non-parametric uncertainty (3) and the
transfer function determined from the complete TGU mathematical model (1) with sufficient accuracy in the
range of TGU operating frequencies.

The developed algorithm of identification is intended for use in the identification subsystem of
ACS IR TGU.
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Hccnedosana npoyedypa uoenmugpuxayuu mamemamuyeckoi mooeiu mypboazpezama ¢ Haauyuem HeonpeoeieHHOCmu
0N NpUMEHEeHUs 6 AGMOMAMUSUPOBAHHOU CUCmeMe B3aUMOCBA3AHHO20 pobacmnozo ynpasienus. Ilpoyedypa
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baszupyemcs Ha memooonoeuu udewmugurayuu "worst-case". Obvexm YnpagnieHus MOOeIUpyemcs MampuyHol
nepeoamounol QyHKyuell ¢ a00umuenoll HeonpeoeieHnocmoio. Moenmugpuxayus cocmoum uz 08yx 3manos. nepaviil —
onpeoenenue nepedamoyHol QyHKYUU ¢ HOMUHATLHLIMU NAPAMEMPAMU C UCHOIb308AHUEM ANCOPUMMA MUHUMUZAYUU
HOZPEeUIHOCIU NPOSHO3d, 6MOPOl — ONpedeleHue 6eco8oU (QYHKYUU 6 MOOelu AOOUMUGHOU HEONpeOeleHHOCMU ¢
NOMOWBIO NOUCKA HAUXYOULE20 BapUAHMA  AMIAUMYOHO-02APUPMUYECKUX XAPAKMEPUCMUK HeOonpedeeHHOCEl.
Hoenmugpurayus npo6ooumcst akmusHbiM cHOCOO0M, onpeoeisisi Habopbl OAHHBIX OJIsL KANCO020 KAHANA YAPAGAEHUsL O
OMOENbHbIM IKCHEPUMEHMAM. JIUHEHO Y4acmomHO-MOOYIUPOBAHHBIL CUSHANL BbIOUPAEMCsl 6 Kayecmee 6X0OHO20
mecmogozo cuenana. Ilocmpoena umumayuonnas moodens mypooazpezama U npoeeoeH YUCIEHHbI IKCNEPUMEHM C
ucnob308anuem npoyedypuvl uoenmugurayuu. buodn. 11, puc. 7.
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Jlocniosceno npoyedypy ioenmugixayii mamemamuynoi mooeni mypooazpeeama 3 HAAGHICMIO HEGU3HAYEHOCMI OJis
3aCMOCYBaHHsL 6 ABMOMAMU306AHIL cUCeMI 83AEMO36'A3an020 pobacmuoeo kepysannus. [Ipoyedypa 6aszyemocs na
Memooonoeii ioenmuixayii "worst-case”. O0'ekm Kepy8aHHs MOOENOEMbC MAMPUYHOIO NEPEOABANbHON QYHKYIEI 3
aoumusHol HesusHauvenicmio. I0enmudbikayia ckradaemvcs 3 080X emanis: nepuiutl — BUABILEHH NepeddasaibHOl
@DYHKYIT 3 HOMIHANLHUMU NApaAMempamu 3 BUKOPUCMAHHAM AN20pummy MIHIMI3ayii noxubku npocHo3y, opyauti —
BUSHAYEHHS 8a2080i (DYHKYIl 6 MOOeni aoumueHOi He8UHAYEHOCMI 3d O0O0NOMO2010 NOWLYKY HAUIPWO2o 8apiaHmy
AMAAIMYOHO-NI02APUPMIUHUX XAPAKMEPUCMUK HeusHaueHocmell. [0enmugikayis npoeooumscs 6 akmusHuil cnocio,
BUHAYAIOYU HAOOPU OaHUX OISl KOJICHO20 KAHANY KEPYBAMHA 3 OKpeMux excnepumenmis. Jlinitino uacmommuo-
MOOYIbOBAHULl CUSHAN 0OUPAEMbCA 8 AKOCMI 6Xi0H020 mecmogoeo cuehany. llobydosano imimayiiny modens
mypboazpezama ma npoBeOeHO HUCETbHUL eKCNEPUMEHM 3 GUKOPUCMAHHAM npoyedypu idenmuixayii. bion. 11,
puc. 7.
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