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The article describes the approach to the formation of a simulation model of information signals, which are typical for 
objects with different types of defects. The dispersive analysis of the signal spectrum components in the bases of the 
discrete Hartley transform and the discrete cosine transform is carried out. The analysis of the form of the 
reconstructed information signal is carried out depending on the number of coefficients of the spectral alignment in 
Hartley bases and cosine functions. The basis of orthogonal functions of a discrete argument is obtained, which can be 
used for the spectral transformation of information signals of a flaw detector. A method of simulation of information 
signals has been developed and experimentally investigated, which allows taking into account the deterministic and 
random components of the characteristics of real information signals. References 24, figures 13, tables 3. 
Keywords: diagnostic, non-destructive testing, information signal, composite material, Hartley transform, dispersion 
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Introduction. The system for selecting optimal diagnostic features determines not only the ideology 
of the recognition algorithm, but also the structure of the construction of the corresponding classifiers. Two 
approaches are known to assess the diagnostic value of selected features. The first approach is to determine 
the minimum number of parameters with great information content. It is related to the intuitiveness of the 
choice and depends on the developer of the diagnostic system. With such an approach, it is impossible to 
predict how optimal the vector of diagnostic signs will be chosen in comparison with others. The second 
approach is the formation of a large number of informative parameters, from which, according to the selected 
criterion, diagnostic signs are selected. Known criteria for evaluating the effectiveness of signs based on 
methods of mathematical statistics and information theory. There is no general approach to the selection of 
criteria and the compilation of systems of optimal signs based on them. 

Products made of composite materials, in contrast to products made of metals, are formed from 
primary raw materials simultaneously with the formation of the materials. Due to the complexity of their 
manufacturing technology, it becomes impossible to build a priori models describing the definitions of 
informative parameters of controlled objects, and ignorance of the laws of the probability distribution of 
changes does not allow to form the corresponding decision rule [1, 2]. 

In tasks of referenceless diagnostics of composite materials, as well as in the case of using neural 
networks as the core of the classifier, the presence of an adequate simulation model of information signals 
characteristic of objects with different types of defects or damage’s degrees has a great importance, since it 
allows solving several problems simultaneously [3].  

First, the existence of such model allows you to build a library of information signals that 
characterize possible defects in composites and therefore can be used to train and configure the information 
and diagnostic system as a whole or in a particular case of a neural network classifier without physically 
manufacturing such samples [4]. Secondly, a simulation model of the information signal can be used to 
verify the accuracy of diagnosis and classification, justify the choice of the most successful architecture and 
type of neural network classifier, select the threshold sensitivity of the system, validate the information and 
diagnostic system and, if necessary, adjust its parameters, etc [5]. 

The developed methods and systems for diagnosing products made of composite materials most often 
use the parameters of information signals as the main diagnostic features, the registration of which causes the 
least complication, namely amplitude, pulse duration, signal phase, and the like [6, 7]. However, the shape of 
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the information signal, i.e. the function of changing it over time provides much more information about the 
technical state of the research sample and therefore provides more opportunities for its diagnosis [8]. 

Analysis of the information signal form allows to get a greater number of diagnostic signs, perform 
object diagnostics under the condition of a limited amount of information, and provides high noise immunity 
of the system, and modern computing systems, signal acquisition, and processing devices allow to implement 
high complexity analysis algorithms, thereby increasing the accuracy of control [9-11]. 

Since at present there is no single universal physical method for diagnosing composite materials that 
would identify all possible types of defects, the method of modeling reference signals was studied using a low-
speed impact method, which allows determining the largest number of types of possible defects in composites. 

Selection of the basis for creating reference diagnostic functions. The information signal of the 
sensor X(t) will be considered as a function of the discrete argument, that is, a vector which elements are 
obtained as a result of uniform sampling of the information signal of the sensor: 

  0 1( ,  ,  ...,  )jX X X X  , (1)

where  j jX X z ,  0 1, , , jZ z z z   are the zone of signal detection  X  ; 0, 1j N  , N is a number of 

discrete signal samples  X  . 

The task of synthesizing an information signal model with given parameters is most adequately 
solved by the representation of a signal in the spectral region. And, if in the case of a continuous periodic 
signal in many cases, the trigonometric Fourier transform takes precedence, then for pulsed signals the 
problem of choosing the appropriate spectral basis arises, which provides the minimum number of 
informative spectral components. In addition to ensuring the minimum number of spectral components 
during choosing an orthogonal basis, an important aspect is also the choice of such a basis in which the 

components of the spectrum of the information 
signal are most dependent on changes in the 
degree of damage of the test object. 

In modern informational diagnostic 
systems, the results of primary measurements are 
discrete samples of pulsed analog information Sk, 
according to which, during further processing, 
informative parameters are determined, such as the 
amplitude of pulses, their duration, and shape. 

Since the pulse information signals 
obtained during the diagnostics of products made of 
composite materials using the low-speed impact 
method have a complex shape, the application of 
the most common orthogonal transformations 
(Fourier, Hartley, Haar, cosine and sine 
transformations, etc.) is made difficult by the large 
number of spectral decomposition components, 
which undergo significant changes when the degree 
of damage to the controlled object changes [12]. 

Dispersion analysis showed that the 
number of coefficients of spectral decomposition, 
which are characterized by a significance 
coefficient ηx (describes the degree of dependence 
of the change of the corresponding coefficient on 
the damage to the object) with a value of more 
than 0.7, is from 20 to 36 coefficients depending 
on the chosen basis. Fig. 1, 2 illustrate the results 
of analysis of variance in the case of using the 
discrete Hartley transform (DHT) and discrete 
cosine transform (DCT) [13, 14] respectively. 

Fig. 3-5 illustrate the dependence of the 
form of the reconstructed information signal on the 
selected number of spectral decomposition 

Fig. 1 

Fig. 2 

Fig. 3 
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coefficients in Hartley bases and cosine functions. Similar results are characteristic in the case of the use of 
discrete Fourier transforms, Haar and discrete sine transforms [15, 16]. The spectral alignment is performed 
by a signal that is obtained by averaging 500 realizations for each of the sample zones studied. 

As can be seen from Fig. 3 (information signal from the defect-free zones), Fig. 4 (reconstructed 
signal from the defect-free zone with 15 spectral decomposition coefficients using DHT (a) and DCT (b)), 
Fig. 5 (Reconstructed signal from the defect-free zone with 30 spectral decomposition coefficients using 
DHT (a) and DCT (b)) for reliable restoration of signals in the specified bases of orthogonal functions, it is 
necessary to have at least 30 spectral components, the presence of a smaller number of components leads to 
significant distortions of the information signal and, as a consequence, the loss of some diagnostic 
information about the object of study. The need to take into account a large number of components of the 
spectrum when building an information signal model leads to a significant complication of the simulation 
algorithm and an increase in computational and time costs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since the set of possible information signals is limited for a specific composite and a physical diagnostic 
method, the output in such a situation (reduction of the number of spectral components, and hence the dimension 
of the feature space) is the use of the information signals themselves, obtained by diagnosing this physical 
method, as the basis [17, 18]. With selecting the necessary set of basic signals, it is possible to build on their own 
basis an orthogonal basis, which will be used for spectral transformation and restoration of information signals. 

Obtaining a proper orthogonal basis, provided that the basis signals are linearly independent, is 
possible using the Gram-Schmidt algorithm. The construction of its own basis of orthogonal functions of a 
discrete argument, in this case, is performed by the following recurrence relations: 

                                1 1 ,h X                               2 2 2 1 1, ,h X X g g        

               3 3 3 1 1 3 2 2( ) ( ) ( ), ( ) ( ) ( ), ( ) ( )h X X g g X g g           ,                                                 (2) 

  
1

1

( ) ( ) ( ), ( ) ( )
n

n n n k k
k

h X X g g




       , 
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  b 
Fig. 4 

a 

                                             b 
                                          Fig. 5 
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where 1 2( ), ( ), , ( )nX X X    are linearly independent vectors (signals) are constructed using the 
discretization of information signals from the space U; n is the number of components of the desired basis 
(the dimension of the subspace U* of the basis signals enters the space U); 1 2( ), ( ), , ( )nh h h    is the 

system of orthogonal vectors (functions of the discrete argument) of the new basis; 1 2( ), ( ), , ( )ng g g   is 

a system of orthonormal vectors (functions of a discrete argument) of a new basis; ( ), ( )n kX g  is scalar  

of vectors Xn(Z) and gk(Z);  0 1, , , jZ z z z  is a signal detection zone; 0, 1j N  , N is the number of 

samples of a discrete signal. 
The system of basic orthonormal vectors is defined as: 

( ) ( ) ( )i i ig h h    , (3)

where ( )ih  is the L2-norm of a vector in Euclidean space,  
21

,
0

( ) .
N

i i j
j

h Z h Z




     

After performing the described algorithm, a new basis of orthogonal functions of a discrete argument 

      1 2, , , ng Z g Z g Z is obtained, which can be used for spectral transformation of information signals of 

a flaw detector. The number of spectral components of this basis can be minimized, which greatly simplifies 
the algorithm for processing information signals and building their simulation model. 

The spectral conversion of the signal according to this basis is performed according to the equation: 

, ( ), ( )i j i ja X g   , 1, ,   1,i L j n  , (4) 

where ,i ja is the j-th coefficient of the spectral decomposition of the i-th realization of the information signal; 

L is the dimension of the sample information signals. 
Signal recovery is performed as follows: 

   
*

,
1

n

i i j j
j

X a g


   , 1,i L , (5) 

where  
*

iX   is the restored i-th implementation of the information signal of the flaw detector by spectral 

components 1,j n . 
Thus, from a space of dimension U (where U is the set of all possible signals characteristic of each 

type of defect), a subspace of dimension U* is selected (U* is the set of signals chosen to build its own basis), 
which makes it possible to approximate with a given accuracy any signal from the U-space. Analytically this 
is described by the expression: 

   
*

iiX X     , (6) 

where  iX   is the output information signal from the U-space;  
*

iX  is an approximated signal; α is the 

permissible absolute error (discrepancy) between the signals. 
Fig. 6 (output information signals from the defect-free zone (a) and the zone with a damaging impact 

of 3.24 kJ (b)), Fig. 7 (spectral alignment of the information signal from the defect-free area (a) and the zone 
with a damaging impact of 3.24 kJ (b)), Fig. 8 (recovered information signals from the defect-free area (a) 
and the zone with a damaging impact of 3.24 kJ (b)) show the corresponding realization of spectral schedule 
of the output information signals, their in the constructed orthogonal basis and the reconstructed signals by 
the inverse transformation of their spectrum. The values of the coefficients of the spectral decomposition for 
each type of zone (defect-free or defective) are presented in Table 1 (values of the coefficients of the spectral 
decomposition of information signals). 

Such an approach makes it possible to significantly reduce the number of spectral decomposition 
coefficients for analyzing and modeling information signals of a flaw detector. In this problem, the 
dimension of the subspace is reduced to U* =5. 
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Construction and study of approximation 
equations. To determine the values of the 
corresponding coefficients, the decomposition 
characteristic of information signals describing the 
various defects of the samples under study, it is 
necessary to obtain a function that approximates the 
distribution of the values of each of the spectral 
decomposition coefficients depending on the degree of 
damage (defectiveness) of the sample under study 
[19]. Such a function can be determined by 
interpolating known values of decomposition 
coefficients, for example, by power polynomials or 
splines [5]. Further, for each spectral component, it is 
necessary to select the desired damage degree (defect 
size) x of the controlled area, determine the value of 
the spectral components by the established functional 
dependencies and perform the inverse transformation. 

Interpolation using splines is more efficient 
than interpolation by polynomials [20], since it gives 
reliable results even for low degrees of interpolation 
equations, and the Runge phenomenon that occurs 
when using high-order polynomial interpolation does 
not occur. The main advantages of spline interpolation 
are stability and complexity. Systems of linear 
equations that need to be solved to construct splines 

are well conditioned, which allows to obtain the coefficients of polynomials with high accuracy. As a result, 
even for very large N, the computational scheme does not lose stability. Building a table of spline 
coefficients requires ( )O N  operations, and calculating the spline value at a given point is 2(log )O N . 

         a 

          b 
      Fig. 6 

        a 

            b 
        Fig. 7 

         a 

    b 
Fig. 8 



ISSN 1607-7970. Техн. електродинаміка. 2021. № 4                                                                                   75 

There are many types of interpolation splines [15]. The paper proposes and studies a method for 
constructing approximations of dependencies of scheduling coefficients on the degree of impact damage using 

Hermite cubic splines and quadratic splines [21, 22]. 
Hermite's cubic spline is defined by the following 

equation: 

   
 

/2
2

0

1 !
,

2 ! 2 !

jb
b j

b j
j

b
H x x

j b j





 

              (7) 

where b is degree of Hermite polynomial. 
Hermite polynomials form a complete orthogonal 

system on the interval  ,   with the weight function 

2 /2xe :             2 /2 ! 2 ,x
b m bmH x H x e dx b 






        (8) 

where δbm is Kronecker symbol. 
An important consequence of the orthogonality of Hermite polynomials is the possibility of 

scheduling various functions in series according to Hermite polynomials. For any integral integer p, the 
equation is true: 

   
/2

2
0

1 1
.

! 2 ! 2 !

p k p

p kk
k

x
H x

p k p k






 
  (9)

Hermite splines have a continuous first derivative, but the second derivative has a discontinuity in 
them. This interpolation method uses two control points and two direction vectors. According to this method, 

the interpolation on the interval  1,k kx x  , where 1, 1k Q   (Q is the number of specified points on the 

interpolation interval that divide the entire interval into a specified number of segments), is given by the 
formula: 

           00 0 10 0 01 1 11 1 1, , / ,k k kP x h t p h t hq h t p h t hq h x x t x x h         (10)

where p0 is initial point at t = xk; p1 is final point at t = xk+1; q0 and q1 are respectively the initial (at t = xk) and 

final (at t = xk + 1) vectors; h00(t) – h11(t) are base Hermite polynomials:      2

00 1 1 2h t t t   , 

   2
01 3 2h t t t  ,    2

10 1h t t t  ,    2
11 1h t t t  . 

There are such symmetry properties of polynomials: 
 00 01( ) ( ) 1h t h t   ‒ symmetry about the y=1/2; 

 00 01( ) (1 )h t h t   ‒ symmetry about the x=1/2; 

 10 11( ) (1 )h t h t    ‒ symmetry with respect to the point (0, 1/2). 
The obtained interpolation functions based on cubic Hermite splines for the first two spectral 

components, depending on the kinetic energy of the damaging impact, are presented in Fig. 9 (approximation 
of Hermite’s splines for the first (a) and second (b) components of the spectral decomposition of the 
information signal). 

Interpolation of a set of points  ,k kx y  for 1, ,k Q   using quadratic splines is carried out for each 

interval, and the parameters for one point in different intervals are chosen the same. The interpolation spline 
will be obtained continuously differentiated by (x1, xQ). There are several ways to define parameters. The 
simplest of them is the following. 

Interpolation of a set of points  ,k kx y  for 1, ,k Q   using quadratic splines is carried out for each 

interval, and the parameters for one point in different intervals are chosen the same. The interpolation spline 
will be obtained continuously differentiated by (x1, xQ). There are several ways to define parameters. The 
simplest of them is the following: 

       21

1

.
2

i i
i i i i i

i i

w w
P x y w x x x x

x x





    


 (11)

The coefficients of this polynomial can be found by choosing the value of w0 and using the 
recurrence relation: 

Table 1 
Coefficient number 

Zone type 
0 1 2 3 4 

No defect 
37.442 -0.036 0.013 -0.009 

-
0.006 

2.3 kJ energy 
damage 

10.318 14.952 0.007 0.006 
-

0.005 
2.8 kJ energy 
damage 

9.687 12.861 2.311 0.005 
-

0.004 
3.2 kJ energy 
damage 

3.059 9.180 -2.581 5.496 
-

0.003 
5.1 kJ energy 
damage 

-0.140 2.547 -1.659 3.820 4.023 
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i i

i i

y y
w w

x x






  


 (12)

The coefficients wi are determined to an approximate degree. Since only two points are used to 
calculate the next point of the curve (function) (instead of three), this method is prone to serious oscillation 
effects when the signal changes abruptly. Due to the presence of such effects, this method may not be used 
for all tasks. 

Fig. 9, a Fig. 9, b 
The form of the obtained interpolation functions for the first two spectral components depending on 

the kinetic energy of the damaging impact using quadratic splines is shown in Fig. 10 (approximation by 
quadratic splines of the first (a) and second (b) component of the spectral decomposition of the information 
signal of the flaw detector). 

Fig. 10, a Fig. 10, b 
To assess the effectiveness of the considered interpolation equations, the information signal received 

from the site with a damaging impact of 2.81 kJ was compared with the simulated signal corresponds to the 
same area. Fig. 11 shows the real signals from the damaged area with an energy of 2.81 kJ ‒ curve S1, as 
well as the simulated signal using Hermite cubic splines (Fig. 11, a) and quadratic splines (Fig. 11, b). 

Fig. 11, a Fig. 11, b 
 
The numerical estimate of the disagreement between the simulated and real signals was carried out 

by calculating the RMSE (root mean square error), the value of which is 2.5ꞏ10-3 for Hermite's cubic splines 
and 4.0ꞏ10-3 for quadratic splines. 
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Thus, using interpolation functions, it is possible to obtain the values of spectral components for a 
given level of damage to the sample zone, and using the inverse transform to obtain a simulated information 
signal [23, 24]. 

Creating a simulation model of the information signal. Information signals are characterized by a 
deterministic and random component. The random component describes such factors as the presence of noise 
in the measuring channels, random errors of the primary transducers, spatial heterogeneity of the composites, 
the state of the surface of the product, and the like. So, to build an adequate simulation model of information 
signals, it is necessary to take into account both components. 

Existing physical models that describe the transformation of information signals depending on the 
defectiveness of the product have a number of significant drawbacks that do not allow them to be used in the 
calculations and the formation of the space of diagnostic signs. These disadvantages include the dependence 
of the flexibility of the defective region and its mechanical impedance on the physical characteristics of the 
edge sections of the defects and their shape, the inability to take into account the effect of the entire 
nomenclature of defects of composite materials on their mechanical characteristics, and considerable 
difficulties in calculating the frequency-dependent mechanical impedances of sections with real defects. 
Therefore, it is advisable to construct stochastic simulation models of information signals, taking into 
account their random changes in time. 

A simulation model of the information signal of a flaw detector can be represented by the following 
equation: 

                           ,
1

( ) ( )
n

i i j j j
j

S Z a g Z


    ,           0, 1i L  ,                                                   (13) 

where ai,j is the deterministic component of the signal, is found according to the algorithm described 
previously through the distribution function of the values of the coefficients of spectral decomposition, 
depending on the degree of damage to the test object; ηj is a random component based on the eigenvalues and 
eigenvectors of the covariance matrix of the information signal; gj (Z) is the basis of the orthogonal functions 
of the discrete argument; L is the volume of the generated sample of information signals; n is the number of 
components in the signal spectrum. 

The determined component of the signal is as follows. It is necessary to consider a vector 

0 1( ) ( , ,... )iX Z X X X , whose elements are obtained as a result of uniform sampling of the information 

signal of the sensor X(t). Then we can find the vector 0 1( ) ( , ,... )iY Z Y Y Y  [ ]i iY M X , 0, 1i N  is the 
mathematical expectation of the vector X (Z), N is the dimension of this vector (the dimension of the space of 
diagnostic signs). After which it is determined: 

, ( ), ( ) , 1, , 1, ,i ja Y Z g Z i L j n    (14)

where ai,j is the j-th coefficient of spectral decomposition of the i-th implementation of the information 
signal; L is the dimension of the sample of information signals; n is the number of spectral components; gj(Z) 
is the basis of the orthogonal functions of the discrete argument. 

Based on the studies of information signals, the first set of diagnostic features of the model is formed of 
five components of the schedule (n1=5) of the signal by the constructed basis of the orthogonal functions of the 
discrete argument (the orthogonalization interval [0, ]ortt Z , the number of samples N=2500 of the discrete 
signal X(Z)). Modeling a certain degree of damage to the sample occurs by changing the values of the necessary 
components of the signal spectrum to values characteristic of the area with the corresponding degree of damage. 

The second set of diagnostic features characterizing the random component of the model is 
determined based on the Karunen-Loev transform. The Karunen-Loev transformation is of fundamental 
importance, since it leads to the construction of uncorrelated features. Thus, there is an expression: 

                                                          
1

0

( ), j 0, 1
n

j k k
k

j n  




   ,                                                            (15) 

where 
1

0

( )
n

k j k
j

j  




  are the expansion coefficients, which are independent Gaussian random variables 

with variances 2 , 0, 1; { ( ), 0, 1}
k k kD k n j j n        is the orthogonal basis whose elements ( )k j  are 

eigenvectors of the covariance matrix R of the real signal. 
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Elements of the matrix R are found by the expression: 
11

, , ,0
( 1) ( )( ),

n
i j k i i k j jk

r n v m v m



     (16)

where vi,j are the elements of the matrix V of the coefficients of the spectral decomposition of information 
signals X(Z); mi are the elements of the matrix M of the mathematical expectation of each coefficient of 
spectral decomposition of the flaw detector signals. 

Matrices V and M are formed as follows: 

                                   

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

...

...
,

...

n

n

B B B n

v v v

v v v
V

v v v





   

 
 
   
 
 
 

   
                        0 1 1{ , ,... },nM m m m   (17)

where B is the number of implementations of information signals; n is the number of spectral decomposition 

coefficients of one implementation, 
1

,
0

B

i k i
k

m v B



  . 

The total energy of the vector 0 1 1{ , ,..., },n     is defined as: 

                                                                           
1 1

0 0

.
n n

ii k
i k

R 
 

 
          (18)

The set of eigenvalues λk and eigenvectors φk(j) uniquely characterize the covariance matrix R (and hence 
the vector η), therefore, it would be advisable to choose as the second set of signs n2=n1=5 eigenvalues and the 
corresponding eigenvectors of the covariance matrix of η. 

Thus, for the simulation of information signals in the framework of the considered types of defects 
and the applied physical diagnostic method, it can be selected: 
 5 coefficients of orthogonal decomposition of the information signal in the constructed basis of 

orthogonal functions of the discrete 
argument gj (Z); 
 5 eigenvalues and the 
corresponding eigenvectors of the 
covariance matrix R of the vector η, 
characterizing the random component 
of the simulated signal. 

The algorithm for modeling 
the information signal is shown in 
Fig. 12. 

The selection of the 
coefficients of orthogonal 

decomposition 
1 1 1 1, 0, ,ka k n    

eigenvalues 
2k  and eigenvectors 

2
( ),k j  2 20, 1k n  , 0, 1j n   

was carried out using realizations of 
the estimates of these characteristics 
obtained in the analysis of real 
information signals in the diagnosis 
of composite materials. 

Since each component 
(coefficient) of the spectral 
decomposition is characterized by a 
different scattering value depending 
on the defect or the degree of damage 
to the sample and serial number, 
therefore, in the simulation 

Fig. 12 
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simulation scheme, for each coefficient, respectively, there are different eigenvalues k  and eigenvectors 

( )k j . Therefore, each of the spectral components will, to varying degrees, experience the influence of 
random factors on its deterministic component, which happens in the analysis ealnyh information signals 
obtained when diagnosing articles made of composite materials. So, it can be noted that the described 
approach allows you to build an adequate simulation model of a real information signal, taking into account 
both its deterministic and its random components. 

Study the adequacy of the developed simulation model. To assess the adequacy of the information 
signal simulation models constructed using the proposed algorithm, the statistical characteristics of the 
obtained values of the spectral decomposition coefficients were evaluated. 

Hypotheses regarding the Gaussian law of 
the distribution of the values of the coefficients of 
spectral decomposition in the obtained basis were 
tested using the Pearson χ2-test. The results of 
calculating the sample characteristics of estimates 
and χ2-statistics for one-dimensional distributions 
with 7 degrees of freedom are presented in Table 2. 
For one-dimensional distributions with 7 degrees of 
freedom with a significance level of α = 0.99, χ2 = 
3.49. 

According to the data presented, it can be 
concluded that the hypothesis of the Gaussian law 
of the distribution of the values of the coefficients of 
spectral decomposition does not contradict the 
available data, therefore they are completely 
characterized by their own mathematical 
expectations and the correlation function. So, it is 
obvious that the diagnostic parameters for 
constructing an information model of information 
signals should be selected based on the analysis of 
these characteristics. 

Using the developed method, information 
signal implementations were obtained for each of 
the sections of a real sample (250 implementations 
for each of the 5 sections). Fig. 13 presents real and 
simulated signals characteristic of a defect-free zone 
and a zone with a different degree of damage; curve 
S1 is the real signal that was obtained in the 
diagnosis of cell panels with shock damage using 
the low-speed impact method, and curve S2 is the 
simulated signal. Fig. 13 presents signal from a zone 
without damage (a) and zones with damage 2.3 kJ 
(b), 2.8 kJ (c), 3.2 kJ (d), 5.1 kJ (e). 

Analyzing the received signals, the average 
discrepancy of the averaged simulated signals from 

the real ones was determined. The corresponding values are given in Table 3 (values of the standard error of 
the modeling of the information signal). 

The obtained simulation models correspond in parameters and characteristics to real information signals, 
and can be used later in the formation of a training sample to configure the system, as well as to generate a control 
sample to verify the validity of the classifier and its validation. This is especially true for systems designed for 
non-standard diagnostics of objects; artificial neural networks are used as the classifier core. 

The results of the study confirm the adequacy of the obtained simulation models of information 
signals and the effectiveness of the proposed method for obtaining reference signals. 

The disadvantage of the discrete argument basis of the orthogonal functions created by the described 
algorithm is its specialization for a certain specific type of information signals. For the spectral conversion of 

Table 2 
Zone 
type 

Defect-
free 

Defect 
1 

Defect 
2 

Defect 
3 

Defect 
4 

Coefficient No 0 
Expected 

value 
35.442 10.318 9.687 3.059 -0.14 

Standard 
error 

4.181 1.582 2.003 0.551 0.079 

Median 36.636 10.030 8.730 3.007 -0.141 
χ2 3.07 3.08 3.19 3.35 3.16 

Coefficient No 1 
Expected 

value 
-0.036 14.951 12.861 9.18 2.547 

Standard 
error 

1.371 2.566 3.445 1.666 0.352 

Median 0.175 13.817 10.996 8.998 2.539 
χ2 3.29 3.12 2.99 3.13 2.94 

Coefficient No 2 
Expected 

value 
0.012 0.007 2.311 -2.581 -1.659 

Standard 
error 

0.879 0.310 0.377 0.449 0.227 

Median 0.191 -0.041 2.155 -2.534 -1.671 
χ2 3.39 3.27 3.11 3.45 3.11 

Coefficient No 3 
Expected 

value 
0.029 0.006 0.005 5.496 3.821 

Standard 
error 

0.142 0.162 0.063 0.956 0.511 

Median 0.042 -0.040 -0.005 5.408 3.866 
χ2 3.21 3.05 2.95 3.12 3.34 

Coefficient No 4 
Expected 

value 
-0.006 -0.005 -0.004 -0.003 4.023 

Standard 
error 

0.067 0.031 0.031 0.074 0.516 

Median 0.005 0.007 -0.015 -0.014 4.103 
χ2 3.37 3.01 3.35 3.40 3.18 



80                                                                                   ISSN 1607-7970. Техн. електродинаміка. 2021. № 4 

signals of another type, it is necessary to re-execute the procedure for constructing an own basis of the 
orthogonal functions of the discrete argument, a new type of information signals will be specified. 

 

Fig. 13, a Fig. 13, b 

Fig. 13, c Fig. 13, d 

Fig. 13, e 

 
 

Conclusions. Based on the obtained 
experimental signals for non-destructive testing of 
products made of composite materials, approaches 
are developed to construct a simulation model of 
signals, which takes into account the deterministic 
and random components of real signals. 

The method of simulation modeling of signals 
obtained while controlling cellular panels using the 
low-speed impact method using orthogonal and 

orthonormal transformations is investigated. On its basis, a series of computer simulation experiments on the 
simulation of these signals was carried out. The obtained results can be applied during testing and training 
diagnostic systems for recognizing the technical condition of products made of composite materials about the 
possible range of defects of a particular material and the nature of their development and allow to analyze the 
transformation of information signals in real technical systems. 

A method for simulating information signals has been developed and experimentally investigated, 
which allows one to take into account the deterministic and random components of the characteristics of real 
information signals, which made it possible to model information signals corresponding to various types and 
sizes of defects, the degree of damage to the material, and optimize the space of diagnostic signs depending 
on the type of material and characteristics defects of composites, synthesize a training set for training and 

Table 3 

Type of zone Standard error of recovery

Defect-free 3.6∙10-3 

With damage energy 2.30 kJ 2.4∙10-3 

With damage energy 2.81 kJ 2.0∙10-3 

With damage energy 3.24 kJ 2.6∙10-3 

With damage energy 5.11 kJ 1.8∙10-3 
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customizing diagnostic system parameters and reduce the amount needed for this procedure actual reference 
samples with models defects. 

Conducted experimental studies to determine the adequacy of the proposed simulation models, the 
obtained value of the standard error of the simulation does not exceed 3.6·10-3. 
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МЕТОД СТВОРЕННЯ ЕТАЛОННИХ СИГНАЛІВ ПРИ НЕРУЙНІВНОМУ КОНТРОЛІ  
НА ОСНОВІ НИЗЬКОШВИДКІСНОГО УДАРУ 
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Описано підхід до формування імітаційної моделі інформаційних сигналів, характерних для об'єктів з різними 
типами дефектів. Проведено дисперсійний аналіз компонентів сигнального спектра в базах дискретного 
перетворення Хартлі та дискретного косинусного перетворення. Аналіз форми реконструйованого 
інформаційного сигналу проводиться залежно від кількості коефіцієнтів спектрального розкладу в базах Хартлі 
та косинусних функцій. Отримано основу ортогональних функцій дискретного аргументу, яку можна 
використовувати для спектрального перетворення інформаційних сигналів дефектоскопа. Розроблено та 
експериментально досліджено метод моделювання інформаційних сигналів, що дозволяє враховувати 
детерміновану та випадкову складові характеристик реальних інформаційних сигналів. Бібл. 24, рис. 13, табл. 3. 
 
Ключові слова: діагностика, неруйнівний контроль, інформаційний сигнал, композиційний матеріал, 
перетворення Хартлі, дисперсійний аналіз. 
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