АНАЛІТИЧНИЙ ТА СГ**D-РОЗРАХУНОК ТЕПЛОВОГО СТАНУ ФОЛЬГОВИХ** ОБМОТОК МАСЛЯНИХ РОЗПОДІЛЬНИХ ТРАНСФОРМАТОРІВ

В.Ф. Іванков¹, канд.техн.наук, А.В. Басова¹, канд.техн.наук, І.В. Хімюк², канд.техн.наук. ¹ ПрАТ «Запоріжтрансформатор», Дніпровське шосе, 3, Запоріжжя, 69600, Україна, ² Інститут електродинаміки НАН України, пр. Перемоги, 56, Київ, 03057, Україна, e-mail: <u>vsi1943@ukr.net</u>

Розроблено аналітичну методику розрахунку теплового стану фольгових обмоток нижчої напруги масляних розподільних трансформаторів. За відомих температур масла в баку ця методика забезпечує визначення коефіцієнтів тепловіддачі на поверхнях обмоток з врахуванням їхніх конструктивних особливостей і теплових навантажень, а також розрахунок перевищень середньої температури обмотки і її найбільш нагрітої точки над маслом і над охолодним середовищем. Для розрахунку перевищень температури обмотки над маслом методом розділення змінних із застосуванням скінченного косинус-перетворення Фур'є отримано розв'язок крайової задачі для рівняння Пуассона з неоднорідними граничними умовами на поверхнях обмотки прямокутного перерізу з анізотропними властивостями та з нерівномірним по її висоті розподілом втрат. Крім того, розроблено альтернативний підхід до визначення теплового стану вісесиметричної моделі трансформатора шляхом чисельного CFD-моделювання системи рівнянь руху та нерозривності охолодної рідини Нав'є-Стокса. Це дає змогу отримати розподіл поля швидкостей масла та абсолютних температур як масла в баку, так і фольгових та шарових обмоток трансформатора з використанням мінімальних емпіричних даних щодо фізичних властивостей масла та тепловіддання баків. Методики верифіковано відомими експериментальними даними для трансформаторів ТМ-1000/35 та ТМ-630/10. Бібл. 11, рис. 4, табл. 2. Ключові слова: трансформатори розподільні, обмотки, фольга, масляне охолодження, нагрів, CFDмоделювання.

Вступ. Розподільні трансформатори з рідинним та повітряним охолодженням потужністю 25-6300 кВА на напругу 6-10 кВ, різноманітні по конструктивному виконанню та призначенню, є найбільш масовою серією силових трансформаторів, які виготовляються та експлуатуються в енергетиці [1, 2]. Задля охолодження масляних розподільних трансформаторів потужностей 40-2500 кВА застосовують гофровані стінки баків, тобто систему охолодження (CO) виду M з природною циркуляцію масла та охолодного повітря, за вищих потужностей – на баку розташовують трубчасті або плоскоштамповані радіатори, які, за потребою, доповнюються вимушеною циркуляцією повітря за допомогою зовнішніх вентиляторів (CO виду Д). Виконання герметичних трансформаторів, застосування шихтовок типу step-lap в планарних магнітних системах (MC), використання витих MC, у тому числі із аморфних сталей, виробництво пожежобезпечних трансформаторів з нетоксичним рідким діелектриком та трансформаторів з охолодженням випарюванням і на даний час залишається актуальним з метою зменшення затрат на виробництво та експлуатацію трансформаторів [1, 2].

Певні переваги [2] мають трансформатори, в яких обмотки нижчої напруги (НН) виготовляють з мідної фольги товщиною від 0.2 до 2.0 мм або з алюмінієвої фольги товщиною від 0.2 до 2.5 мм та висотою від 200 до 800 мм. Намотування обмоток вищої напруги (ВН) має значні технологічні труднощі, тому найбільш поширеною є змішана конструкція: обмотка НН виконується з фольги, а обмотка ВН – шарова обмотка із одно чи багатожильних проводів з паперовою ізоляцією. Фольгові обмотки (ФО) НН мають підвищену стійкість і міцність до дії радіальних сил короткого замикання, для їхнього кріплення може бути застосована полегшена пресувальна система. Підвищене заповнення перерізу ФО і, внаслідок цього «вікна» МС дають змогу зменшити об'єм масла і масу трансформатора. Намотування обмоток листами фольги і міжшарового ізоляційного паперу, підмотування ізоляційних смуг на торцях обмоток задля підвищення їхньої жорсткості, автоматизована пайка шин-відведень забезпечується на автоматизованих верстатах. У такому разі ФО можуть намотуватися безпосередньо на ізоляційні циліндри або через дискретні опорні рейки. Задля зменшення нагріву обмоток виконуються осьові охолодні канали за допомогою рейок або гофрованого електрокартону.

[©] Іванков В.Ф., Басова А.В., Хімюк І.В., 2020

В той же час, почергове розташування листів фольги та ізоляційного паперу призводить до вираженої теплової анізотропії ФО в осьовому та радіальному напрямках, а значний осьовий розмір листів – до концентрації місцевих втрат на краях ФО за рахунок витіснення струмів в провідних листах фольги магнітним полем розсіяння обмоток.

Зазвичай, як у теплових типових випробуваннях [3], так і у розрахунках [1, 4] трансформаторів з масляним охолодженням застосовують відомий метод перевищення температури (ПТ). Нормовані стандартами [3, 4] середнє перевищення температури обмотки та її найбільш нагрітої точки (ННТ) над температурою охолодного середовища (ТОС) отримують сумою середнього перевищення температури обмотки і її найбільш нагрітої точки над маслом та перевищення температури над ТОС, відповідно, середнього та верхнього масла в баку.

Відносно близькими до ФО по конструкції та тепловим процесам є шарові обмотки. Для таких обмоток ПТ над маслом розраховують за галузевою методикою [5], а температуру масла в баку, зокрема, у випадку гофрованих баків – за методикою [6]. Однак, методика [5], яка грунтується на експериментальних дослідженнях моделей з рівномірним розподілом втрат (фізичне моделювання на постійному струмі), дає змогу лише наближено врахувати значну теплову анізотропію та нерівномірність розподілу втрат ФО.

Тому при освоєнні ФО проведено експериментальні дослідження електромагнітних і теплових параметрів трансформатора ТМ-1000/35 з обмоткою НН з алюмінієвої фольги [7]. Також з використанням вказаних вимірів розроблено аналітичну методику теплового розрахунку ФО [8, 9]. Для цього методом розділення змінних із застосуванням скінченного косинус-перетворення Фур'є отримано розв'язок крайової задачі для рівняння Пуассона відносно ПТ ФО над маслом з неоднорідними граничними умовами на поверхнях анізотропної ФО та з нерівномірним по її висоті розподілом втрат. Однак застосування вказаної методики не можна вважати задовільним, оскільки вона не містить алгоритму розрахунку коефіцієнтів тепловіддачі (КТВ) з поверхонь обмотки в масло. Зокрема, в [8, 9] їх визначено для частинного випадку порівнянням розрахунків з вимірами [7]. Методика має також незручності визначення середнього ПТ обмотки та її ННТ – шляхом чисельного інтегрування та пошуку максимуму в певній сітці розрахункових точок по перерізу обмотки. Розрахунок перевищення температури ФО над температурою охолодного середовища не розглянуто.

Серед відомих досліджень слід вказати на представлені в роботі [10] результати вимірів та чисельних розрахунків методом скінченних елементів ПТ над маслом обмоток розподільного трансформатора значної потужності в 10 МВА з гофрованим баком. Отримано підтвердження основних конструктивних рішень, зокрема, – намотку ФО НН з чотирьох, а обмотку ВН з простого проводу – з шести концентрів, розділених охолодними каналами. У вказаній роботі, однак, зазначено, що виміри оптоволоконними датчиками показали помітно менші від розрахункових ПТ обмотки та її ННТ над температурою охолодного середовища, що віднесено до похибки розрахунку ПТ над температурою охолодного середовища масла в баку за використаною емпіричною методикою.

В [11] тепловий стан розподільних трансформаторів з ФО досліджується на основі електротеплових аналогій. Однак вказаний підхід потребує значних зусиль для автоматичної побудови та дослідження розгалужених електричних заступних схем теплових процесів із різною мірою деталізації розрахункових схем задля досягнення необхідної точності розрахунків в системах САПР. При цьому, застосовуючи також метод ПТ, розрахунок температур масла в баку винесено в окремий етап «інженерних» розрахунків.

Зазначимо, що стандарт [4] рекомендує проведення прямих вимірів температур в обмотках під час теплових типових випробувань трансформаторів або в експлуатації, зокрема, оптоволоконними датчиками, що пов'язано зі значними трудовими затратами і технічними труднощами [7, 10, 11]. Тому також рекомендовано проводити відповідні теплові дослідження на так званих віртуальних стендах трансформаторного устаткування шляхом чисельного CFD-моделювання (Computational Fluid Dynamics) системи рівнянь руху і нерозривності охолодної рідини Нав'є-Стокса.

Наведений короткий огляд вказує на потребу подальшого уточнення аналітичної методики [8, 9] задля забезпечення необхідної точності не тільки перевірних, а й багатоваріантних оптимізаційних розрахунків в САПР [9]. Представлений в [9] певний досвід СFD-моделювання дає змогу розробити в якості альтернативної до аналітичної методики також методику чисельного розрахунку теплового стану масляних розподільних трансформаторів, яка б не застосовувала метод перевищення температур і ґрунтувалася на мінімальних емпіричних даних.

Метою роботи є розробка та верифікація експериментальними даними аналітичної мето-

дики, яка за відомих температур масла в баку забезпечує розрахунок коефіцієнтів тепловіддачі фольгової обмотки нижчої напруги масляного розподільного трансформатора, перевищень її середньої температури та найбільш нагрітої точки над маслом і над охолодним середовищем, а також альтернативної методики визначення нагрівів як масла в баку, так і фольгових та шарових обмоток шляхом чисельного CFD-розрахунку комплексної моделі трансформатора з мінімальним використанням емпіричних даних щодо фізичних властивостей масла та тепловіддання баків.

Конструкція ФО НН, розподіл втрат. Ескіз ФО НН показано на рис. 1, *a*, де позначено половину її висоти *l*, ширину *a*, товщину фольги Δ_f , товщину ізоляційного паперу Δ_i , коефіцієнти тепловіддачі (КТВ) в масло α_1 , α_2 , α_3 з внутрішньої (1), зовнішньої (2) та торцевої (3) поверхонь обмотки. Обмотка характеризується тепловою анізотропією по подовжній λ_z та поперечній осі λ_x , яка визначається коефіцієнтами теплопровідностями металу та ізоляції λ_f , λ_i

$$\lambda_{z} = \lambda_{f}, \qquad \lambda_{x} = \left(\Delta_{f} + \Delta_{i}\right)\lambda_{f}\lambda_{i} / \left(\Delta_{f}\lambda_{i} + \Delta_{i}\lambda_{f}\right). \tag{1}$$

Так, для прикладу, за значень $\lambda_f = \lambda_z = 210$ для алюмінієвої фольги та $\lambda_i = 0.148$ – для промасленого паперу за їхніх товщинах, відповідно, 0.55 мм та 0.12 мм отримуємо $\lambda_x = 0.527$ Вт/(м К), тобто $\lambda_z >> \lambda_x$.

Через дистанційні рейки і ізоляційний циліндр ФО НН опирається на стрижень МС трансформатора. Ізоляційний циліндр завтовшки b_c з коефіцієнтом теплопровідності λ_c може прилягати до поверхні обмотки і в той же час характеризуватися тепловим опором $R_c = b_c / \lambda_c$. Верхня і нижня торцеві поверхні обмотки ізолюються підмотуванням паперових смуг або шайбами з електрокартону. Їхній осьовий розмір b_s і коефіцієнт теплопровідності λ_s визначають тепловий опір $R_s = b_s / \lambda_s$.

Якщо на внутрішній і зовнішній вертикальних поверхнях обмотки з середнім діаметром *D* розташовані дистанційні рейки (опорний циліндр відсутній), відповідно, з числом

і шириною n_{r1} , b_{r1} та n_{r2} , b_{r2} , то поверхні обмотки характеризуються коефіцієнтами закриття

$$k_{z1} = \pi (D-a) / (\pi (D-a) - n_{r1}b_{r1}), \quad k_{z2} = \pi (D+a) / (\pi (D+a) - n_{r2}b_{r2}).$$
(2)

Згори торцевого підмотування ізоляційною стрічкою або опорної картонної шайби розташовуються дискретні ізоляційні прокладення числом n_t , шириною b_t і висотою b_3 . Це визначає коефіцієнт закриття

$$k_{z3} = \pi D / (\pi D - n_t b_t). \tag{3}$$

Дискретність прокладень на торці обмотки забезпечує рух масла з вертикальних каналів через горизонтальні за межі обмотки.

Задля розрахунку розподілу струмів, втрат у ФО та магнітного поля трансформатора в області обмоток використовується [9] вісесиметрична електромагнітна модель, в якій частини обмоток НН і ВН представляються багатоелементною схемою заміщення з круговими елементами із зосереджуними параметрами активних опорів, власних і взаємних індуктивностей елементів. Розподіл струмів в частинах обмоток визначається розв'язком відповідної системи рівнянь Кірхгофа. Розрахований за вказаною методикою розподіл об'ємних втрат q(z) = p(z)/v по висоті верхньої половини ФО НН трансформатора TM-1000/35 по відношенню до значення втрат в центрі обмотки показано на рис. 1, δ у відносних одиницях (в.о). В подальшому приймається допущення, що розподіл втрат і, відповідно,

ПТ обмотки над маслом по висоті $\Phi O \varepsilon$ симетричним.

Аналітична методика теплового розрахунку ФО. Використовуючи метод перевищення температури задля розробки аналітичної методики, визначимо нагрів масла в баку. Зокрема, для трансформаторів з гофробаками з врахуванням технологічно освоєної конструкції вертикальних гофр на стінках баку розраховується сумарна ефективна поверхня гофр та плоских стінок баку S_{Σ} . Враховуються висота, ширина гофр, крок між гофрами, ширина каналу в гофрі. Через цю поверхню відбувається теплообмін масла в баку з зовнішнім охолодним повітрям. Відношенням сумарних втрат в трансформаторі P_{Σ} до вказаної поверхні визначається щільність теплового потоку баку. По цій величині з використанням емпіричних коефіцієнтів k_1, k_2 [6] і коефіцієнту 0.8 [3] вираховуються перевищення верхньої $\theta_{me\delta}$ та середньої $\theta_{mc\delta}$ температури масла в баку над ТОС, а в сумі з температурою ТОС t_{TOC} – середня температура масла в баку $t_{m\delta}$

$$\theta_{_{\mathcal{M}B\tilde{\mathcal{O}}}} = k_1 \left(P_{\Sigma} / S_{\Sigma} \right)^{k_2}, \quad \theta_{_{\mathcal{M}C\tilde{\mathcal{O}}}} = 0.8\theta_{_{\mathcal{M}G\tilde{\mathcal{O}}}}, \qquad t_{_{\mathcal{M}\tilde{\mathcal{O}}}} = \theta_{_{\mathcal{M}C\tilde{\mathcal{O}}}} + t_{\mathrm{TOC}}.$$
(4)

Отримані температури необхідні в подальшому для розрахунку КТВ з поверхонь обмоток, а також ПТ обмоток і їхніх ННТ над ТОС. Зауважимо, що в разі СО виду М та Д з трубчастими або плоскоштампованими радіаторами необхідно використати відповідні галузеві методики розрахунку нагріву масла в баку, які представлено, зокрема в [1, 9].

У разі масляного охолодження розподільних трансформаторів КТВ з поверхонь обмоток визначається конвективним теплообміном за допущенням що рух масла – ламінарний. Класичне визначення КТВ через критерій Нуссельта, теплопровідність масла і характерний лінійний розмір охолоджуваної поверхні має певні труднощі, внаслідок чого відомі аналітико-експериментальні КТВ мають досить розрізнений характер [9].

Тому в даній роботі КТВ α_v з вертикальних поверхонь обмотки визначено емпіричною залежністю, встановленою для звичайних шарових обмоток для видів охолодження М та Д [5]

$$x_{\nu}(q,b) = 0.827 \, q^{0.4} \, b^{0.35} \, t_{_{M6}}^{0.21}, \tag{5}$$

де q – щільність теплового потоку; b – ширина відповідного прилеглого масляного каналу, утвореного поверхнею обмотки, ізоляційним циліндром і вертикальними дистанційними рейками; $t_{M\delta}$ – середня по висоті обмотки температура прилеглого масла або спрощено – середня температура масла у баку (4).

КТВ a_g для верхньої горизонтальної поверхні визначається співвідношенням

$$\alpha_{\mathfrak{g}}(q,b) = 0.7 \alpha_{\mathfrak{g}}(q,b). \tag{6}$$

Щільності теплового потоку на внутрішній q_{x1} , зовнішній q_{x2} і торцевій q_z поверхнях для тіла з анізотропною теплопровідністю і з несиметричними умовами охолодження визначимо через геометричні розміри і теплові опори на сторонах

$$q_{x1} = R_{x2}R_z \,\chi, \quad q_{x2} = R_{x1}R_z \,\chi, \quad q_z = R_{x1}R_{x2}\,\chi, \quad \chi = q_v al \,/ (aR_{x1}R_{x2} + lR_z(R_{x1} + R_{x2})). \tag{7}$$

Теплові опори залежать від координати твірної розділення теплових потоків *x_{max}* на внутрішню та зовнішню поверхні обмотки (координати твірної найбільших температур) відповідних провідностей і КТВ з поверхонь

$$R_{x1} = x_{max} / \lambda_x + 1 / \alpha_1, \qquad R_{x2} = (a - x_{max}) / \lambda_x + 1 / \alpha_2, \qquad R_z = l / \lambda_z + 1 / \alpha_3.$$
(8)

Таким чином, з урахуванням теплових опорів на поверхнях, коефіцієнтів закриття і щільності теплових потоків значення КТВ на сторонах ФО визначаються

$$\alpha_{1} = \left[\left(\alpha_{v} \left(q_{x1} k_{1}, b_{1} \right) / k_{z1} \right)^{-1} + R_{c} \right]^{-1}, \quad \alpha_{2} = \alpha_{v} \left(q_{x2} k_{2}, b_{2} \right) / k_{z2}, \quad \alpha_{3} = \left[\left(\alpha_{g} \left(q_{z} k_{3}, b_{3} \right) / k_{z3} \right)^{-1} + R_{s} \right]^{-1}, \quad (9)$$

де b_1, b_2, b_3 – величини масляних каналів на внутрішній, зовнішній та торцевій поверхнях.

Взаємна залежність α_1 , α_2 , α_3 , x_{max} та q_{x1} , q_{x2} , q_z у (7) – (9) враховується послідовними наближеннями. Приймається початкове значення $x_{max} = a/2$ у разі наявності масляних каналів у обох поверхонь обмотки і значення $x_{max} = a/3$, якщо обмотка опирається безпосередньо на ізоляційний циліндр.

Задля розрахунку перевищення температур ФО над маслом використано постановку [8, 9] крайової задачі відносно ПТ над маслом (ПТ _м) $\theta(x, z)$ для прямокутного перерізу обмотки з анізо-

тропними властивостями у вигляді рівняння Пуассона

$$\lambda_x \frac{\partial^2 \theta}{\partial x^2} + \lambda_z \frac{\partial^2 \theta}{\partial z^2} = -q_v(z), \qquad (10)$$

умови симетрії по осі z

$$\lambda_z \frac{\partial \theta}{\partial z} \Big|_{z=0} = 0 \tag{11}$$

і граничних умов тепловіддачі на поверхні обмотки

$$\lambda_{x} \frac{\partial \theta}{\partial x}\Big|_{x=0} = \alpha_{1}\theta\Big|_{x=0}, \quad \lambda_{x} \frac{\partial \theta}{\partial x}\Big|_{x=a} = -\alpha_{2}\theta\Big|_{x=a}, \quad \lambda_{z} \frac{\partial \theta}{\partial z}\Big|_{z=l} = -\alpha_{3}\theta\Big|_{z=l}. \tag{12}$$

Для розв'язку задачі (10) – (12) застосовано метод розділення змінних із скінченним косинусперетворенням Фур'є

$$\theta(x,z) = \sum_{n=1}^{\infty} \theta_n(x) \cos p_n z, \qquad q_v(z) = \sum_{n=1}^{\infty} q_n \cos p_n z, \qquad (13)$$

де

$$q_n = \frac{2p_n}{p_n l + 0.5 \sin 2p_n l} \int_0^l q(z) \cos p_n z \, dz \,. \tag{14}$$

Власні значення p_n є коренями трансцендентного рівняння

$$ctgp_n l = p_n \lambda_z / \alpha_3.$$
(15)

На відміну від [8, 9] коефіцієнти $\theta_n(x)$ зручно представити у наступному вигляді:

$$\theta_n(\mathbf{x}) = \frac{q_n}{v_n^2 \lambda_{\mathbf{x}}} \left(\frac{A_n e^{v_n \mathbf{x}} + B_n e^{-v_n \mathbf{x}}}{C_n} + 1 \right),\tag{16}$$

де

$$A_n = \alpha_2 (\lambda_x \nu_n + \alpha_1) e^{-\nu_n a} + \alpha_1 (\lambda_x \nu_n - \alpha_2) e^{-2\nu_n a}, \qquad (17)$$

$$B_n = \alpha_2 (\lambda_x \nu_n - \alpha_1) e^{-\nu_n a} + \alpha_1 (\lambda_x \nu_n + \alpha_2), \quad \nu_n^2 = p_n^2 \lambda_z / \lambda_x.$$
(18)

$$C_n = (\lambda_x \nu_n - \alpha_1)(\lambda_x \nu_n - \alpha_2)e^{-2\nu_n a} - (\lambda_x \nu_n + \alpha_1)(\lambda_x \nu_n + \alpha_2).$$
(19)

Усереднення отриманого розв'язку прямим інтегруванням дає змогу аналітично визначити середнє ПТ_м обмотки

$$\theta_{m} = \frac{1}{a l} \sum_{n=1}^{\infty} \frac{q_{n}}{v_{n}^{2} \lambda_{x}} \left(\frac{A_{n} \left(e^{v_{n}a} - 1 \right) - B_{n} \left(e^{-v_{n}a} - 1 \right)}{C_{n} v_{n}} + a \right) \frac{\sin p_{n}l}{p_{n}}.$$
(20)

а також по екстремуму першого члена ряду координату вертикальної твірної найбільших перевищень температур по ширині обмотки

$$x_{max} = \frac{1}{2\nu_{n=1}} ln \frac{B_{n=1}}{A_{n=1}}.$$
(21)

Виконуючи, з певним кроком, розрахунок перевищення температури в точках z_i по висоті твірної найбільших температур, отримуємо значення ПТ _м ННТ обмотки

$$\theta_{HHT} = \max\{\theta(\bar{x}_{max}, z_i)\}, \quad i = 1, 2, \dots.$$
(22)

В кінцевому результаті, використовуючи значення (4), (20), (22), отримуємо ПТ над ТОС середньої температури обмотки θ_{m} TOC та її ННТ θ_{HHT} TOC

$$\theta_{m_TOC} = \theta_m + \theta_{MC\delta}, \quad \theta_{HHT_TOC} = \theta_{HHT} + \theta_{M\delta\delta}.$$
 (23)

Значення ПТ масла (4) та обмотки (20), (22), (23) використовуються у розрахунку навантажувальної здатності трансформаторів [4].

Методика чисельного CFD-моделювання розподільного трансформатора. Використано основні підходи до CFD-моделювання силових трансформаторів, які детально представлено в [9], і стосовно розподільного трансформатора з ФО коротко полягають в наступному.

У разі завдання джерел тепла в CFD-моделі вважаються відомими втрати в MC, обмотках, елементах конструкції і у баку. Складна тривимірна конструкція трансформатора стрижневого типу спрощується до вісесиметричної моделі. Стрижень MC представляється ізотропним циліндром з рівномірними об'ємними втратами, обмотки – циліндрами з анізотропними теплопровідностями та з відповідним розподілом втрат. В моделі відтворюються верхня та нижня ярмова ізоляції обмоток і циліндри головної ізоляції з тепловими властивостями електрокартону. Задля врахування нелінійних властивостей трансформаторного масла застосовуються відомі експериментальні залежності.

Під час формування CFD-моделі гофрованого бака на його верхній та нижній поверхнях задаються відомі граничні умови конвективної і променистої тепловіддачі з горизонтальних поверхонь [9], а на вертикальних стінках баку – KTB, який визначається тепловіддачею гофр. Зауважимо, що в разі CO виду M та Д з трубчастими або плоскоштампованими радіаторами теплообмін з охолодним середовищем визначається відповідним тепловим елементом в комплексній CFD-моделі трансформатора [9].

Для врахування розташованих на вертикальних поверхнях обмоток дискретних дистанційних рейок, а на торцевій – опорних дискретних прокладень, на вказаних поверхнях моделей обмотки визначаються теплові опори, які залежать від сталих значень теплопровідностей обмоток (1), коефіцієнтів закриття їхніх поверхонь (2), (3) та від локальних теплових залежностей (7) – (9), при цьому емпіричні дані (5), (6) не використовуються.

Розв'язок системи рівнянь руху та нерозривності охолодної рідини Нав'є-Стокса, доповненої рівнянням збереження енергії, проводиться засобами використаного програмного забезпечення у разі допущення що рух масла має ламінарний характер. Розрахунки проводяться в абсолютних величинах з прийнятою ТОС 20 °C.

Результатами розрахунків є поле абсолютної температури в перерізі розрахункової моделі та поле швидкостей масла. Додатковою обробкою вказаних результатів отримуються необхідні величини для визначення теплового стану трансформатора, що продемонстровано у подальшому на прикладі чисельних досліджень.

Зіставлення розрахунків та вимірів. Задля верифікації розроблених методик в якості об'єктів досліджень розглянуто трансформатор ТМ-1000/35 з відомими результатами спеціальних вимірювань розподілу струмів (втрат) та локальних температур в ФО НН [7], а також трансформатор ТМ-630/10 сучасної конструкції з результатами вимірювань температур масла в баку та середніх температур обмоток НН та ВН під час теплових типових випробувань. Попередньо з використанням САПР [9] виконано комплексний перевірний розрахунок магнітних потоків та втрат в МС, реактансів, розподілу струмів в обмотках, у тому числі ФО, магнітних полів, основних та додаткових втрат в обмотках, додаткових втрат в елементах конструкції, сумарних втрат в трансформаторі, нагрівів масла в баку, МС та шарових обмоток.

Трансформатор ТМ-1000/35. У [7] зазначено, що для експериментальних досліджень використано трансформатор, в якому МС, бак, кришка з розширювачем і охолодні радіатори залишено від серійного зразка. Обмотку НН з простого проводу замінено на ФО шириною 26 мм з алюмінієвої фольги розмірами 1х760 мм і з прилеглими внутрішнім та зовнішнім масляними каналами 10 і 16 мм. Зовнішню обмотку ВН з простого алюмінієвого проводу залишено без змін.

У процесі виконання даної роботи розраховано розподіл втрат по висоті ФО НН, який показано на рис. 1, б. Також визначено температури масла в баку у відповідності до застосованої СО з радіаторами. Це забезпечило проведення аналітичного розрахунку за алгоритмами (1) – (19) теплових параметрів ФО НН в об'ємі вимірів, які представлено у роботі [7].

Так, зокрема, розраховано розподіл по поперечному розміру \bar{x} перевищення температури над маслом $\bar{\theta}$ в центрі $\Phi O(l=0)$, який показано на рис. 2, *a* у відносних одиницях (в.о.). За шкалу абсцис прийнято відносну координату $\bar{x} = x/a$. Координата найбільших температур дорівнює $x_{max}/a=0.4$. Як базисну для відносних значень $\bar{\theta}$ використано найбільшу виміряну величину в центрі ΦO . Розподіл $\bar{\theta}$ по висоті ΦO показано на рис. 2, δ : ліва лінія – на зовнішній, середня – на внутрішній, а крайня права лінія – на середній вертикальній твірній обмотки. Віссю ординат є осьові координати обмотки z (м). Кружками відмічено експериментальні значення, які визначено за різницею показів термопар, розташованих усередині обмотки і у прилеглих масляних каналах [7].

Зазначимо, що алгоритмами (1) – (9) визначено КТВ на внутрішній та зовнішній поверхнях ФО відповідно 38 та 77 Вт/(м²K), що досить близько відповідає значенням 40 та 80 Вт/(м²K), які в [8, 9] серією розрахунків підібрано з використанням вимірів [7].

Результати аналітичних розрахунків з достатньою точністю відповідають результатам вимірів і підтверджують висновок роботи [7], що підвищені місцеві втрати, які через концентрацію виникають вихрових струмів на краях ФО, не призводять до значної нерівномірності перевищення температури над маслом по висоті обмотки через теплопровідність високу провідникового матеріалу. В силу наявності прилеглих охолодних каналів з обох сторін обмотки розподіл температур по її поперечному розміру майже симетричний, менші значення мають місце на зовнішній твірній з більшою поверхнею охо-

лодження і, відповідно, - з більшим КТВ.

Трансформатор ТМ-630/10. Задля охолодження трансформатора застосовано бак з гофрованими стінками. Обмотку НН виготовлено з алюмінієвої фольги 0.9х600 мм, обмотку ВН – з простого проводу. Для зниження нагрівів обмоток в них застосовано по одному внутрішньому осьовому масляному каналу шириною 6 мм. Тому, як в електромагнітній, так і в тепловій розрахункових моделях обмотку НН представлено двома концентрами НН₁ та HH₂ шириною 13 мм та 14 мм, подібно – двома концентрами представляється обмотка ВН. Внутрішні концентри обмоток НН та ВН намотані безпосередньо на опорні картонні циліндри, тому, як буде видно в подальшому з представлених результатів досліджень, вони мають більші значення температур.

За методикою теплових типових випробувань за ТОС 20 °С отримано два результати: датчиком, розташованим на 0.1 м нижче кришки бака – температуру верхнього масла в баку; за тепловою зміною активного опору – середні температури обмоток. Розташування та температура ННТ обмоток вимірюваннями не визначались.

Додатковою обробкою результатів за стандартом [3] визначено ПТ над ТОС (ПТ_тос) верхнього, середнього масла в баку та середніх температур обмоток. Експериментальні

гаолиця г				
Елемент	ПТ_тос, К			
дослідження	Вимірювання	Норма		
Масло верхнє	52.2	60		
Масло середнє	41.8	-		
Обмотка НН	58.7	65		
Обмотка ВН	59.2	65		

дослідження проведено на трьох зразках обладнання. Усередненні значення виміряних величин наведено у табл. 1. Відхилення температур від їхніх середніх значень знаходяться в межах ±1 К.

Розподіл об'ємних втрат у в.о. по висоті концентрів НН показано на рис. 3, а. За одиницю

L	oomorka IIII	56.7	05				
a	Обмотка ВН	59.2	65				
i							
e	едненні значення виміряних величин ачень знахоляться в межах +1 К						
значень знаходяться в межах ±1 К.							

1 показано на рис. 3, а. За одиницю прийнято втрати в середині висоти

внутрішнього концентру HH_1 (суцільна крива). За розробленою аналітичною методикою (1) – (22) розраховано перевищення середніх температур та ННТ над маслом в концентрах НН, які представлено у табл. 2, а також розподіл ПТ м по твірних максимальних висоті температур, який показано на рис. 3. б (у в.о.). Як і на попередньому рисунку, суцільні лінії відносяться до концентру HH₁.

Помітно, що як і об'ємні втрати, так і перевищення ПТ_{_М} мають більші значення для

концентру HH₁. За даними табл. 2 подібні співвідношення мають місце також для перевищень середніх температур концентрів HH₁ і BH₁ та їхніх HHT, що, як було зазначено вище, зумовлено одностороннім охолодженням цих концентрів в силу їхнього намотування на ізоляційні опорні циліндри. В той же час зовнішні концентри обох обмоток мають двостороннє охолодження маслом в прилеглих вертикальних каналах і, в результаті, менші температури. **Таблиця 2**

I aomin' a										
Концентр	Середні ПТ_м концентрів, обмоток, К		ПТ_ _М ННТ, К		Коефіцієнти ННТ					
-	AM	CFD	Виміри	AM	CFD	AM	CFD			
HH_1/HH_2	18.7 ¹⁾ /15.0 ¹⁾	20.1/14.8	_/_	20.01)/15.71)	19.7/13.2	1.07 ¹⁾ /1.05 ¹⁾	0.98/0.89			
HH	16.6 ¹⁾	17.1	16.9	20.0 ¹⁾	19.7	1.20 ¹⁾	1.15			
BH_1/BH_2	19.8 ²⁾ /11.3 ²⁾	17.0/10.9	_/_	21.7 ²⁾ /12.1 ²⁾	20.1/10.3	$1.10^{2}/1.07^{2}$	1.18/0.94			
BH	16.0 ²⁾	14.2	17.4	21.7 ²⁾	20.1	1.37 ²⁾	1.42			

¹⁾ – аналітична методика даної роботи для ФО,

²⁾ – аналітична методика для шарової обмотки [5]

Ескіз розрахункової моделі трансформатора показано на рис. 4. Результатами CFD-розрахунку на рис. 4 є поля температур (°C) в абсолютній шкалі отриманих значень (a) і в шкалі температур по верхньому маслу (б), а також поле швидкостей масла (м/с) в активній частині моделі трансформатора (в).

За значеннями температурного поля на рис. 4, б в місці розташування датчика температур під час теплових випробувань, ΠT_{TOC} верхнього дорівнює 74масла 20 = 54К. шо вілповілає виміряному значенню 52 К. В серелині висоти бака маємо

64-20=44 К, тобто їхнє співвідношення 44/54 близьке до нормованого коефіцієнта 0.8 [3].

По висоті НН температура порівняно рівномірна, найбільша температура у верхній частині концентра $HH_1 - 90$ °C. По висоті ВН через зменшену осьову теплову провідність в порівнянні з ФО НН градієнт температур вищий, найбільша температура у $BH_1 - 91$ °C.

Найбільші швидкості масла спостерігаються у поверхонь обмоток і бака та приймають значення порядку 0.001 – 0.005 м/с, що є характерним для охолоджень виду М та Д.

Додатково визначено перевищення середньої температури концентрів над температурою масла по середині висоти бака та перевищення температури ННТ над маслом в баку на рівні її розташування. Задля порівняння з вимірами ПТ_М обмоток над маслом, як зазвичай, отримано усередненням по масах концентрів. Отримані результати розрахунків ПТ по концентрам та по обмоткам аналітичними методиками та CFD-моделюванням представлено у табл. 2.

Розраховані перевищення середньої температури ФО НН над маслом досить близькі до виміряної величини. Трохи більші відхилення спостерігаються для обмотки ВН, що можна пояснити тим, що в реальній конструкції певна частина поверхні обмотки звернена до обмотки сусідньої фази, масляний канал між ними є меншим, ніж канал в розрахунковій моделі у поперечному перерізі до баку, і є додатково підігрітим власне сусідньою обмоткою.

ПТ_м ННТ над маслом обмоток визначено за максимальним значенням в концентрах. Розраховано відповідні коефіцієнти ННТ. Для обмотки НН цей коефіцієнт (1.20 та 1.15) близький до рекомендованого в стандарті [4] для розподільних трансформаторів значення 1.1, а для обмотки ВН (1.42) – перевищує вказане значення і є визначальним для трансформатора. Отриманий результат підтверджує рекомендацію стандарту, за яким коефіцієнт ННТ необхідно все ж таки «визначити процедурами, заснованими на фундаментальних принципах втрат і теплопередачі, та обгрунтувати прямим вимірюванням на виготовлених зразках або на прототипах трансформаторів або обмоток».

Таким чином, методика чисельного CFD-моделювання забезпечує розрахунок нормованих стандартами перевищення температури над температурою охолодного середовища [4], як середнього масла в баку, так і ФО НН та шарової обмотки ВН, визначення найбільш нагрітої обмотки трансформатора, а також коефіцієнта ННТ цієї обмотки. Перевага методики полягає в мінімізації емпіричних даних – використовуються лише фізичні властивості масла та тепловіддання баку.

Висновки. Розроблено аналітичну методику розрахунку теплового стану фольгової обмотки нижчої напруги масляних розподільних трансформаторів, яка за відомих температур масла в баку забезпечує визначення коефіцієнтів тепловіддачі на поверхні обмотки з врахуванням її конструктивних особливостей і теплових навантажень, розрахунок перевищень середньої температури обмотки і її найбільш нагрітої точки над маслом і над охолодним середовищем. Для розрахунку перевищень температури фольгової обмотки над маслом методом розділення змінних із застосуванням скінченного косинус-перетворення Фур'є отримано розв'язок крайової задачі для рівняння Пуассона з неоднорідними граничними умовами на поверхнях анізотропної фольгової обмотки та з нерівномірним по її висоті розподілом втрат.

Також розроблено альтернативний підхід до визначення теплового стану фольгової обмотки шляхом чисельного теплового та гідродинамічного аналізу комплексної CFD-моделі трансформатора. Такий підхід дає змогу отримати розподіл поля швидкостей та абсолютних температур як масла в баку, так фольгових та шарових обмоток трансформатора з використанням мінімальних емпіричних даних щодо фізичних властивостей масла та тепловіддання баків.

Аналітичну та чисельну методики верифіковано відомими експериментальними даними для трансформаторів TM-1000/35 та TM-630/10.

Розроблені методики розрахунку теплового стану фольгової обмотки нижчої напруги разом з галузевими методиками розрахунку масла в баку та обмоток зі звичайних проводів забезпечують проектування масляних розподільних трансформаторів, у тому числі під час оптимізаційних розрахунків у складі САПР.

Роботу виконано за рахунок відомчого замовлення КПКВК 6541030.

1. Бики М.А. Проектирование силовых трансформаторов. Расчеты основных параметров. М.: Знак, 2013. 612 с.

2. Бормосов В.А., Костоусова М.Н., Петренко А.Ф., Смольская Н.Е. Перспективы и состояние разработок распределительных трансформаторов массовых серий. Информационный портал «TRANSFORMatopis», 2004. 22 с. URL: https://transform.ru/articles/html/03project/a000001.article (дата звернення: 19.02.2020)

3. IEC 60076-2. Power transformers - Part 2: Temperature rise for liquid-immersed transformers, 2011. 100 p.

4. IEC 60076-7. Power transformers - Part 7: Loading guide for oil-immersed transformers, 2017. 89 p.

5. Воеводин И.Д., Гитин Ю.С., Михайловский Ю.А., Щукина И.И. Руководящий документ РД16 452-88.

Трансформаторы силовые масляные с системами охлаждения М и Д. Тепловой расчёт обмоток. Запорожье: ВИТ, 1988. 28 с.

6. Михайловский Ю.А., Иванова З.Ф., Серебрицкая Е.А. Методика расчета 0АХ 682.064. Методика расчета нагрева масла в силовых трансформаторах с гофрированными баками мощностью от 100 до 2500 кВА. Запорожье: ВИТ. 1995. 8 с.

7. Григоров И.Б., Степенко О.Н. Электромагнитные исследования распределительных трансформаторов с обмотками НН из алюминиевой ленты. Электротехн. пром-сть. Сер. Аппараты высокого напряжения, трансформаторы, силовые конденсаторы. 1982. Вып. 9 (131). С. 1-4.

8. Воеводина Е.И., Григоров И.Б., Иванков В.Ф., Степенко О.Н. Расчет превышения температуры в фольговых обмотках низшего напряжения распределительных трансформаторов. *Техн. электродинамика*. 1984. № 1. С. 32-34.

9. Іванков В.Ф., Басова А.В., Хімюк І.В. Методи моделювання трансформаторів та реакторів. К.: Наш формат, 2017. 490 с. 10. Kennedy S.P., Gordner T., Berube J.N., Ringlee R., Aubin J. Hot stop studies for sheet wound transformer windings. URL: <u>http://neoptix.com/literature/2013-04_doble_paper_final.pdf</u> (дата звернення: 19.02.2020)

11. Стулов А.С. Разработка комбинированных моделей и методов теплового анализа в САПР распределитель-ных трансформаторов: автореф. дис. ... канд. техн. наук 05.13.12. Ивановский ГЭУ. Иваново. 2015. 152 с.

АНАЛИТИЧЕСКИЙ И СFD-РАСЧЕТ ТЕПЛОВОГО СОСТОЯНИЯ ФОЛЬГОВЫХ ОБМОТОК МАСЛЯНЫХ РАСПРЕДЕЛИТЕЛЬНЫХ ТРАНСФОРМАТОРОВ

В.Ф. Иванков¹, канд.техн.наук, **А.В. Басова¹**, канд.техн.наук, **И.В. Хімюк²**, канд.техн.наук.

¹ ЧАО «Запорожтрансформатор»,

Днепровское шоссе, 3, Запорожье, 69600, Україна

²Институт електродинамики НАН Украины,

пр. Победы, 56, Киев, 03057, Украина, e-mail: <u>vsi1943@ukr.net</u>

Разработана аналитическая методика расчета теплового состояния фольговых обмоток низшего напряжения масляных распределительных трансформаторов. При известных температурах масла в баке эта методика обеспечивает определение коэффициентов теплоотдачи на поверхностях обмоток с учетом их конструктивных особенностей и тепловых нагрузок, а также расчет превышений средней температуры обмотки и ее наиболее нагретой точки над маслом и над охлаждающей средой. Для расчета превышения температуры обмотки над маслом методом разделения переменных с применением конечного косинус-преобразования Фурье получено решение краевой задачи для уравнения Пуассона с неоднородными граничными условиями на поверхностях обмотки прямоугольного сечения с анизотропными свойствами и с неравномерным по ее высоте распределением потерь. Кроме того, разработан альтернативный подход к определению теплового состояния осесимметричной модели трансформатора путем численного CFD-моделирования системы уравнений движения и неразрывности охлаждающей жидкости Навье-Стокса. Это позволяет получить распределение поля скоростей масла и абсолютных температур как масла в баке, так и фольговых и шаровых обмоток трансформатора с использованием минимальных эмпирических данных о физических свойствах масла и теплоотдачи баков. Методики верифицированы известными экспериментальными дая трансформаторов ТМ-1000/35 и ТМ-630/10. Библ. 11, рис. 4. табл. 2. Ключевые слова: трансформаторы распределительные, обмотки, фольга, масляное охлаждение, нагрев, CFDмоделирование.

ANALYTICAL AND CFD-CALCULATION OF THE HEAT CONDITION OF FOIL WINDINGS OF OIL DISTRIBUTING TRANSFORMERS

V.F. Ivankov¹, A.V. Basova¹, I.V. Khimjk²,

¹PrJSC «ZTR»,

Dniprovske shose, 3, Zaporizhya, 69600, Ukraine

² Institute of Electrodynamics of the National Academy of Sciences of Ukraine,

pr. Peremohy, 56, Kyiv, 03057, Ukraine, e-mail: <u>vsi1943@ukr.net</u>

An analytical method of calculating the thermal condition of foil windings of lower voltage oil distribution transformers has been developed. At known oil temperatures in the tank, this technique provides the identification of heat-recoil ratios on winding surfaces, taking into account their design features and heat loads, as well as calculating the excess esexcesses of the average temperature of the winding and its most heated point above the oil and over the cooling environment. In order to calculate the excess temperature of the winding over the oil by the method of separating variables using the final cosinusconversion Fourier obtained the solution of the edge problem for the Poisson equation with heterogeneous boundary conditions on the surfaces of the rectangular section winding with anisotropic properties and with its uneven distribution of losses. In addition, an alternative approach has been developed to determine the thermal state of an axisymmetric transformer model by numerical CFD modeling of the system of equations of motion and continuity of the Navier-Stokes coolant. This allows you to obtain the distribution of the oil velocity field and absolute temperatures, both of the oil in the tank, and of the foil and ball windings of the transformer using the minimum empirical data on the physical properties of the oil and the heat transfer of the tanks. The methods are verified by known experimental data for transformers TM-1000/35 and TM-630/10. References 11, figures 4, tables 2.

Keywords: transformers distributive, windings, foil, oily cooling, heat, CFD-modeling.

1. Biki M.A. Power transformer design. Basic parameter calculations. Moskva: Znak, 2013. 612 p. (Rus).

2. Bormosov V.A., Kostousova M.N., Petrenko A.F., Smolskaia N.E Prospects and state of development of distribution transformers of mass series. Information portal «TRANSFORMatory», 2004. 22 p. (Rus).

URL: https://transform.ru/articles/html/03project/a000001.article (accessed at 19.02.2020)

3. IEC 60076-2. Power transformers - Part 2: Temperature rise for liquid-immersed transformers, 2011. 100 p.

4. IEC 60076-7. Power transformers - Part 7: Loading guide for oil-immersed transformers, 2017. 89 p.

5. Voyevodin I.D., Gitin Yu.S., Mikhaylovskiy Yu.A., Shchukina I.I. Guidance document RD16 452-88. Power oil transformers with cooling systems M and D. Thermal calculation of windings. Zaporozhye: VIT. 1988. 28 p. (Rus).

6. Mikhailovskii A., Ivanova Z.F., Serebritskaia E.A. Calculation method 0AX 682.064. Method for calculating oil heating in power transformers with corrugated tanks with a capacity of 100 to 2500 kVA. Zaporozh'ye: VIT. 1995. 8 p. (Rus).

7. Hrihorov I. B., Stepenko O. N. Electromagnetic research of distribution transformers with LV windings made of aluminum tape. *Elektrotekhnicheskaia promyshlenost. Seriia Apparaty vysokoho napriazheniia, transformatory, silovye kondensatory.* 1982. Vyp. 9 (131). Pp. 1-4. (Rus).

8. Voyevodina Ye.I., Grigorov I.B., Ivankov V.F., Stepenko O.N. Calculation of temperature rise in low voltage foil windings of distribution transformers. *Tekhnicheskaya elektrodinamika*. 1984. No 1. Pp. 32-34. (Rus).

9. Ivankov V.F., Basova A.V., Khimiuk I.V. Methods for modeling transformers and reactors. K.: Nash format, 2017. 490 p. (Ukr). 10. Kennedy S.P., Gordner T., Berube J.N., Ringlee R., Aubin J. Hot stop studies for sheet wound transformer windings. URL: <u>http://neoptix.com/literature/2013-04 doble paper final.pdf</u> (accessed at 19.02.2020)

11. Stulov A.S. Development of combined models and methods of thermal analysis in CAD for distribution transformers: author. dis. ... Cand. tech. sciences 05.13.12. Ivanovskiy GEU. Ivanovo. 2015. 152 p. (Rus).

Надійшла 04.03.2020 Остаточний варіант10.08.2020