ТЕОРЕТИЧНА ЕЛЕКТРОТЕХНІКА ТА ЕЛЕКТРОФІЗИКА

УДК 621.3

DOI: https://doi.org/10.15407/techned2019.01.003

e-mail: kychunikhin@gmail.com

ПРО НЕОДНОРІДНІСТЬ НАМАГНІЧУВАННЯ ЦИЛІНДРИЧНИХ ОСЕРДЬ В ОДНОРІДНОМУ МАГНІТНОМУ ПОЛІ

К.В. Чуніхін

ДУ "Інститут технічних проблем магнетизму НАН України", вул. Індустріальна, 19, Харків, 61106, Україна,

Досліджено неоднорідність намагнічування циліндричних осердь електромагнітів у постійному однорідному зовнішньому магнітному полі з урахуванням нелінійності магнітних властивостей матеріалу. Запропоновано ітераційний алгоритм розрахунку результуючого магнітного поля всередині осердя, в основі якого лежить чисельне розв'язання інтегрального рівняння відносно поверхневої густини фіктивних магнітних зарядів разом з апроксимованою кривою намагнічування матеріалу. Установлено збіжність ітераційного алгоритму при довільних початкових значеннях магнітних проникностей. Бібл. 9, табл. 1, рис. 3.

Ключові слова: намагнічування, циліндричне осердя, магнітне поле, інтегральне рівняння, фіктивний магнітний заряд, крива намагнічування.

Вступ. При визначенні магнітного моменту електромагнітів [2] найбільш складною задачею є розрахунок магнітного моменту осердя, оскільки магнітне поле обмотки з тонкого дроту розраховується з використанням відомих формул. Магнітний момент осердя залежить від його форми і розмірів, рівня зовнішнього магнітного поля та магнітних властивостей матеріалу. Найбільш поширеним для циліндричних осердь є метод визначення магнітного моменту з застосуванням коефіцієнтів розмагнічування [2, 6]. В його основі лежить використання коефіцієнта розмагнічування, вписаного в циліндр еліпсоїда обертання в однорідному зовнішньому магнітному полі, і коректувального коефіцієнта [6]. На відміну від еліпсоїда обертання магнітне поле в циліндричному осерді неоднорідне, а коефіцієнт розмагнічування залежить не тільки від розмірів осердя, але й від магнітної проникності матеріалу [2]. У реальних електромагнітах властивості матеріалу описуються кривою намагнічування, отже зв'язок між напруженістю магнітного поля та намагніченістю є нелінійним і залежить від рівня поля у кожній точці осердя. *Мета роботи* – створення на основі чисельного розв'язання інтегрального рівняння відносно поверхневої густини фіктивних магнітних зарядів алгоритму розрахунку намагніченості з урахуванням неоднорідності результуючого магнітного поля і нелінійності кривої намагнічування для визначення магнітного моменту циліндричного осердя.

Формулювання та розв'язання задачі за допомогою інтегрального рівняння і неоднорідність намагнічування осердя при допущенні постійної магнітної проникності. Розглядаємо феромагнітний циліндр довжиною b радіуса R (рис. 1) з абсолютною магнітною проникністю μ_1 , розташований співвісно з зовнішнім

однорідним магнітостатичним полем напруженістю \tilde{H}_0 у необмеженому немагнітному просторі.

Напруженість результуючого плоскомеридіанного магнітного поля всередині осердя представляємо у вигляді [1, 7]

$$\vec{H} = \vec{H}_0 + \vec{H}_m,\tag{1}$$

де \vec{H}_m – напруженість магнітного поля, яке обумовлено магнітними властивостями матеріалу.

Магнітне поле всередині осердя є потенціальним, тому скалярний потенціал цього поля φ_m визначаємо співвідношенням

$$\vec{H}_m = -\operatorname{grad} \varphi_m \,. \tag{2}$$

Використовуючи електростатичну аналогію задачі [1, 4], що розглядається, представляємо скалярний потенціал φ_m у такому вигляді [3, 9]:

$$\varphi_m(Q) = \frac{1}{\pi\mu_0} \int_l \frac{\sigma_m(M) r_M K(k)}{\sqrt{(z_Q - z_M)^2 + (r_Q + r_M)^2}} \, dl_M \,, \tag{3}$$

© Чуніхін К.В., 2019

де $Q, M \in l$ – точка спостереження і точка з поточними координатами; $\sigma_m(M)$ – поверхнева густина фіктивних магнітних зарядів; K(k) – повний еліптичний інтеграл 1-го роду модуля k [8]; μ_0 – магнітна стала; l, dl_M – контур меридіанного перерізу осердя і його елемент із центром у точці M; $k = 2\{r_Q r_M/[(z_Q - z_M)^2 + (z_Q + z_M)^2]\}^{1/2}$; r_Q, r_M та z_Q, z_M – радіальні та осьові циліндричні координати точок Q і M.

Для визначення \vec{H}_m , \vec{H} за формулами (1)–(3) потрібно розв'язати інтегральне рівняння [5]

$$\sigma_m(Q) - \frac{\lambda_\mu}{\pi} \int_l \sigma_m(M) [S(Q, M) - S(Q, M')] dl_M = 2\mu_0 \lambda_\mu H_{0n}(Q), \qquad (4)$$

де l – частина контуру меридіанного перерізу в першій чверті координатної площини zOr, $l = l_1 + l_2$; $l_{1,2}$ – твірні бокової і торцевої поверхонь; $\lambda_{\mu} = (\mu_1 - \mu_0)/(\mu_1 + \mu_0)$; H_{0n} – нормальна проекція \vec{H}_0 ; M' – точка, симетрична точці M відносно осі r.

У рівнянні (4)
$$S(Q,M) = \frac{k}{2} \sqrt{\frac{r_M}{r_Q^3}} \left[K(k) + \frac{1}{k'^2} \left(\frac{r_M + r_Q}{2r_M} k^2 - 1 \right) E(k) \right]$$
 при $Q \in l_1$, а при $Q \in l_2$ –

 $S(Q,M) = \frac{z_Q - z_M}{4\sqrt{r_Q^3 r_M}} \frac{k^3}{k'^2} E(k)$, де E(k), k' – повний еліптичний інтеграл другого роду модуля k і додатковий мо-

дуль повних еліптичних інтегралів, $k' = \sqrt{1-k^2}$ [8]. Функція S(Q, M') визначається за цими самими формулами, якщо в них замінити координати точки M на координати точки M'. Проекції \vec{H} для точок Q всередині циліндра дорівнюють

$$H_r(Q) = \frac{1}{2\pi\mu_0} \int_l \sigma_m(M) S_r(Q, M) dl_M , \quad H_z(Q) = H_0 + \frac{1}{2\pi\mu_0} \int_l \sigma_m(M) S_z(Q, M) dl_M .$$
(5, 6)

У формулах (5), (6) S_r і S_z визначаються за такими самими формулами, як і ядро рівняння (4) відповідно для $Q \in l_1$ і $Q \in l_2$.

Інтегральне рівняння (4) було перетворено з використанням квадратурної формули прямокутників у систему алгебраїчних рівнянь порядку N(N - 3агальне число вузлів просторової сітки, $N = N_1 + N_2$, $N_1 -$ число вузлів на l_1 , $N_2 -$ на l_2). Ця система рівнянь розв'язувалася прямим методом, основаним на оберненні матриці лівих частин і подальшому множенні оберненої матриці на вектор-стовпець правих частин. Алгоритм був тестований за допомогою аналітичних розв'язків задач впливу магнітного поля на магнетовані тіла, що мають сферичні границі [5]. За формулами (5), (6) знайдено проекції, а потім і модуль \vec{H} у кожній точці осердя. Для визначення модуля намагніченості \vec{J} використовували криву намагнічування пермалою 50H, апроксимовану залежністю [2]

$$J = aH/(H+c), \tag{7}$$

де a, c – сталі коефіцієнти, $a = 1,25 \cdot 10^6$ А/м, c = 40 А/м.

На рис. 2 показано вплив μ_1 на розподілення *J* вздовж осі осердя (r = 0, криві *1*, *3*, *5*) і поблизу бокової поверхні (r = 0,99R, криві *2*, *4*, *6*). Розміри осердя: R = 5 мм (цей розмір залишається незмінним і надалі), b = 165 мм (b/R = 33). Для кривих *1*, *2* величина $\mu_1 = 500\mu_0$, *3*, $4 - 2000\mu_0$, *5*, $6 - 10000\mu_0$. Прийнято: $N_1 = 4455$, $N_2 = 270$, $z^* = z/b$, $H_0 = 6586,62$ А/м. Очевидно, що в поперечних перерізах осердя (за винятком деяких ділянок поблизу

торців) намагніченість практично однакова, що може бути обґрунтуванням прийнятого у роботах [2, 6] припущення. Те саме можна сказати і про розподілення намагніченості вздовж осі z, причому довжина області однорідного намагнічування зменшується зі збільшенням μ_1 . Поза цією областю спостерігаємо, по-перше, посилення неоднорідності намагнічування, яка зростає до торців, і, по-друге, значні розбіжності між значеннями Jна осі і поблизу поверхні осердя. Наведені на рис. 2 дані показують, що навіть в однорідному зовнішньому магнітному полі неоднорідність намагнічування осердя суперечить припущенню постійної магнітної проникності. Це протиріччя може бути усунено урахуванням нелінійності намагнічування матеріалу.

Розрахунок намагнічування циліндричного осердя з урахуванням нелінійності матеріалу. Замінимо нелінійне намагнічуване середовище осердя кусково-однорідним, що складається з $2N_o$ однорідних циліндричних елементів довжиною b_k , які мають деякі значення магнітної проникності μ_k , $k = \overline{1, N_o}$, $\sum_{k=1}^{k=N_o} b_k = b/2$. Враховуючи попередні розрахунки (рис. 2), вважаємо розподіл Ј всередині кожного елемента рівномірним. Це припущення дає змогу нехтувати об'ємними фіктивними магнітними зарядами і обмежитися визначенням σ_m . При цьому інтегральне рівняння відносно σ_m , а також формули для розрахунку $H_r(Q)$, $H_z(Q)$ відрізняються від

(4)–(6), по-перше, тим, що $l = l_1 + l_2 + l_3$, $l_3 = \sum_{k=1}^{k=N_o-1} l_k^{\text{M}}$, l_k^{M} – твірна межі k та k+1 елементів. По-друге, у рівнянні

(4) для $Q \in l_3$ параметр $\lambda_{\mu} = (\mu_k - \mu_{k+1})/(\mu_k + \mu_{k+1})$, а для $Q \in l_1 \cup l_2 - \lambda_{\mu} = (\mu_k - \mu_0)/(\mu_k + \mu_0)$. Для $Q \in l_3 S(Q, M)$ та S(Q, M') визначаються за такими самими формулами, як і для $Q \in l_2$.

Було розроблено ітераційний алгоритм, цикл якого складається з трьох основних блоків. У першому блоці розв'язуємо перетворене інтегральне рівняння при деяких початкових значеннях $\mu_k^{(0)}$. У другому – в кожній точці осердя за допомогою формул (5), (6) знаходимо H, а із залежності (7) і зв'язку між \vec{B} , \vec{H} , \vec{J} на основі прийнятої у [2] моделі намагнічування молекулярними струмами – відносну магнітну проникність (8)

$$\mu_r(Q) = 1 + a/[H(Q) + c].$$

У третьому блоці знаходимо середні за об'ємом *k*-го циліндричного елемента відносну і абсолютну магнітні проникності

$$\mu_{krc}^{(j)} = \frac{2}{R^2 b_k} \int_{S_k} r_M \mu_r(M) dS_M, \quad \mu_{kc}^{(j)} = \mu_0 \mu_{krc}^{(j)}, \quad (9,10)$$

де S_k – площа меридіанного перерізу k-го елемента.

У наведених формулах j – номер ітерації. Після цього приймаємо $\mu_k = \mu_{kc}^{(j)}$ та повертаємося до першого блока алгоритму. Ітерації продовжуємо до виконання умови для всіх $k = 1, N_{o}$

$$|\mu_k^{(j)} - \mu_k^{(j-1)}| < \Delta, \qquad j = 1, 2, \dots, n_{ii}, \tag{11}$$

де Δ – задана розбіжність (достатньо мале число); n_{it} – число ітерацій.

Встановлено, що ітераційний процес збігається до деяких величин $\mu_{kc}^{(it)}$ при будь-яких $\mu_k^{(0)}$. На рис. 3 показано вплив $N_{\rm o}$ на розподілення J_z уздовж осі осердя для b/R ==16 (рис. 3, *a*) та для b/R = 33 (рис. 3, б) при тому самому *H*₀, що і для кривих рис. 2. Для кривих *1*, 5 середню магнітну проникність визначали для осердя у цілому (N_o = 1). Для кривої 2 N_o = 2, 3 – 4, 4 – 8, 6 – 3, 7 – 9, 8 – 15. Бачимо, що при збільшенні N_o результати розрахунків збігаються. У таблиці наведено значення осьової проекції магнітного моменту осердя

$$M_z = 4\pi \int_{S} r_M J_z(M) dS_M \tag{12}$$

та їхніх відносних розбіжностей від умовно точних величин при варіації N_0 та b/R (S – площа меридіанного перерізу

осердя, умовно точна величина, визначена при максимальних N_0). Спостерігаємо, що при зменшенні b/R зменшуються відносні розбіжності і навіть для невеликих N_0 складають декілька відсотків. При b/R = 16 можливо

<i>b</i> , мм; <i>b/R</i>	80; 16	No	1	2	4	8
		$M_z, \mathbf{A} \cdot \mathbf{m}^2$	2,0313	2,0847	2,1128	2,1258
		ξ, %	4,45	1,94	0,61	-
	165; 33	No	1	3	9	15
		$M_z, \mathbf{A} \cdot \mathbf{m}^2$	9,9528	11,162	11,478	11,534
		ξ, %	13,7	3,23	0,49	_

застосування середнього значення магнітної проникності для осердя у цілому.

Висновки. Намагніченість циліндричного осердя у постійному однорідному магнітному полі з урахуванням крайових ефектів і нелінійності намагнічування може бути

визначена з використанням ітераційного алгоритму розв'язання інтегрального рівняння відносно поверхневої густини фіктивних магнітних зарядів циліндричних елементів, на які поділяється осердя, з використанням кривої намагнічування і середніх за об'ємом кожного елемента магнітних проникностей. Для деяких вихідних даних може бути використане середнє значення проникності для осердя у цілому.

1. Гринберг Г.А. Избранные вопросы математической теории электрических и магнитных явлений. М.-Л.: Изд. АН СССР, 1948. 730 с.

2. Коваленко А.П. Магнитные системы управления космическими летательными аппаратами. М.: Машиностроение, 1975. 248 с.

3. Михайлов В.М. Расчет электрических и магнитных полей с помощью интегральных и интегродиффе-

ренциальных уравнений. К.: УМК ВО, 1988. 60 с.

4.Михайлов В.М., Чунихин К.В. Об электростатической аналогии магнитостатического поля в неоднородной намагничивающейся среде. *Електротехніка і електромеханіка*. 2017. № 5. С. 38-40.

5.Михайлов В.М., Чунихин К.В. Тестирование численного решения задачи определения источников магничоского поля в намагничиваемой среде. *Електротехніка і електромеханіка*. 2017. № 6. С. 42-46.

6.Розенблат М.А. Коэффициенты размагничивания стержней высокой проницаемости. *Журнал технической физики*. 1954, Т. 24. № 4. С. 637-661.

7.Тозони О.В., Маергойз И.Д. Расчет трехмерных электромагнитных полей. К.: Техніка, 1974. 352 с. **8.**Янке Е., Эмде Ф., Леш Ф. Специальные функции. М.: Наука, 1977. 344 с.

9. Jungerman J.A. Fourth-order uniform electric field form two charged rings. *Review of Scientific Instruments*. 1984. Vol. 55. No 9. Pp. 1479-1482.

УДК 621.3

О НЕОДНОРОДНОСТИ НАМАГНИЧИВАНИЯ ЦИЛИНДРИЧЕСКИХ СЕРДЕЧНИКОВ В ОДНОРОДНОМ МАГНИТНОМ ПОЛЕ

К.В. Чунихин

ГУ "Институт технических проблем магнетизма НАН Украины",

ул. Индустриальная, 19, Харьков, 61106, Украина, e-mail: <u>kvchunikhin@gmail.com</u>

Исследована неоднородность намагничивания цилиндрических сердечников электромагнита в постоянном однородном внешнем магнитном поле с учетом нелинейности магнитных свойств материала. Предложен итерационный алгоритм расчета результирующего магнитного поля внутри сердечника, в основе которого лежит численное решение интегрального уравнения относительно поверхностной плотности фиктивных магнитных зарядов совместно с аппроксимированной кривой намагничивания материала. Установлена сходимость итерационного алгоритма при произвольных начальных значениях магнитных проницаемостей. Библ. 9, табл. 1, рис. 3.

Ключевые слова: намагничивание, цилиндрический сердечник, магнитное поле, интегральное уравнение, фиктивный магнитный заряд, кривая намагничивания.

ON THE INHOMOGENEITY OF THE MAGNETIZATION OF CYLINDRICAL CORES IN THE UNIFORM MAGNETIC FIELD

K.V.Chunikhin

Institute of Technical Problems of Magnetism National Academy of Sciences of Ukraine,

19, Industrialna st., Kharkiv, 61106, Ukraine e-mail: <u>kvchunikhin@gmail.com</u>

The inhomogeneity of the magnetization of cylindrical cores of an electromagnet in a constant uniform external magnetic field is studied taking into account the nonlinearity of the magnetic properties of the material. The iterative algorithm for calculating resulting magnetic field inside a core, based on the numerical solution of the integral equation for the surface density of fictitious magnetic charges in conjunction with the approximated magnetization curve of a material, is proposed. The convergence of the iterative algorithm for arbitrary initial values of magnetic permeabilities is established. References 9, table 1, figures 3.

Key words: magnetization, cylindrical core, magnetic field, integral equation, fictitious magnetic charge, magnetization curve.

1. Grinberg G.A. Selected questions of mathematical theory of electric and magnetic phenomena. Moskva-Leningrad: Izdatelstvo Akademii Nauk SSSR, 1948. 730 p. (Rus)

2. Kovalenko A.P. Magnetic control systems for space vehicles. Moskva: Mashinostroenie, 1975. 248 p. (Rus)

3. Mikhailov V.M. Calculation of electric and magnetic fields using integral and integrodifferential equations. Kiev: Uchebno-Metodicheskii Kompleks Vysshego Obrazovaniia, 1988. 60 p. (Rus)

4. Mikhailov V.M., Chunikhin K.V. On electrostatic analogy of magnetostatic field in inhomogeneous magnetized medium. *Electrical engineering & Electromechanics*. 2017. No 5. Pp. 38-40. (Rus)

5. Mikhailov V.M., Chunikhin K.V. Testing of numerical solution of the problem of determining sources of magnetostatic field in magnetized medium. *Electrical engineering & Electromechanics*. 2017. No 6. Pp. 42-46. (Rus)

6. Rozenblat M.A. Demagnetization factors for high permeability rods. *Zhurnal Tekhnicheskoi Fiziki*. 1954. Vol. 24. No 4. Pp. 637-661. (Rus)

7. Tozoni O.V., Maergoyz I.D. Calculation of three-dimensional electromagnetic fields. Kyiv: Tekhnika, 1974. 352 p. (Rus)

8. Ianke E., Emde F., Lesh F. Special functions. Moskva: Nauka, 1977. 344 p. (Rus)

9. Jungerman J.A. Fourth-order uniform electric field form two charged rings. *Review of Scientific Instruments*. 1984. Vol. 55. No 9. Pp. 1479-1482.

Надійшла 05.03.2018 Остаточний варіант 10.08.2018