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THREE-DIMENSIONAL QUASI-STATIONARY ELECTROMAGNETIC FIELD
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The analytical method is developed to calculate the three-dimensional quasi-stationary electromagnetic field generated
by arbitrary spatial current contour near the conducting body with plane surface. By the use of displacement currents
in dielectric region under quasi-stationary approximation, in addition to the results presented earlier, the solution for
the scalar potential and electric intensity in entire dielectric half-space is found. Owing to the established fact of verti-
cal zero components of the electric intensity and current density in conducting half-space, the electric field of surface
charge compensates completely the vertical component of induced electric intensity of the initial current system. As an
example, the electric intensity and surface electric charge density are calculated for the current contour configuration
typical for technological systems. References 13, figures 3.

Key words: analytical method, spatial current contour (closed loop), eddy currents, 3D quasi-stationary electromagnetic
field.

Introduction. In many technical applications, the mathematical models used the initial sources of elec-
tromagnetic field as alternating currents flowing along the contours of certain configurations are developed to
determine the distribution of electromagnetic field [1, 2, 4, 10]. When the initial currents flow near conducting
bodies, the eddy currents are induced in them, these currents also form the field [3, 5, 9].

For quasi-stationary electromagnetic field, the problem in general formulation for the case of plane
interface between the conducting and dielectric media is considered in [11, 13]. In these works the results
attained in [7] are used. In [7] the contours, without loss of generality, are presented as a serial system of
emitting dipoles. At the same time, the analytical solution in [11, 13] is found only for magnetic field in the
non-conducting region where the current contour is located. The scalar potential and electric intensity in 3D
case are left without consideration; the condition of the contour closure is ignored too. Further development
of the theory of calculation of the three-dimensional field for arbitrary contours configuration is obtained in
[12]. In this paper, under quasi-stationary approximation, the displacement currents are not taken into ac-
count in both conducting and dielectric regions. As a result, the analytical solution of the problem for mag-
netic and electric fields in the conducting region is found. However, the usual restrictions for quasi-stationary
problems create difficulties for determination of electric field in dielectric medium in the case of three-
dimensional current contours [8, 12].

In this connection, the present paper is aimed at the development of analytical theory for solving the
problem of three-dimensional quasi-stationary electromagnetic fields of the current flowing near the con-
ducting magnetizing half-space. That makes it possible to find the solution for both the magnetic and electric
field components in the entire space. The main feature of the work consists in the consideration of displace-
ment currents in a dielectric medium.

Mathematical model. The mathematical formulation of the problem in this paper contains both ex-
pressions used in [12] and expressions different from them. Therefore, for a clear statement, a complete
problem formulation is used in this paper.

By analogy with [12], let us consider the arbitrary contour in a non-conducting medium with relative
dielectric permittivity ¢,. The alternating current 7, flows along the contour located near the conducting
body with plane boundary. The body has conductivity y and relative magnetic permeability u . The electro-
physical parameters within the dielectric and conducting media are not variable in space and in time. The
initial current contour is shown in fig. 1, a by solid line. As considered, the dimensions of the contour are
much less than the dimensions of the plane section of body surface. It gives a possibility to use the model of
current contour above the conducting half-space.
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The problem in the terms of the complex amplitudes of electromagnetic field is formulated in the
general case as follows. The problem is described by Maxwell equations for the vectors of electric intensity
E and magnetic intensity H , magnetic flux density B and electrical displacement D, total current density
Jo+J, =Jo+Jj+jp that includes the density of the current from the extraneous sources in the elements of

contour j,, conduction current density j and displacement current density j, =ioD
VxH=j,+j; V-B=0;
VxE=-ioB, V-D=0(,

where ® is the angular frequency; i is the imaginary unit.
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Fig. 1
For the linear problem, the free charge in a piecewise homogeneous medium can be concentrated
only on the interface with corresponding surface charge density o. Then the last equation of system (1) that
describes the field out of the boundary surface has no charge.
The initial current contour must be closed for quasi-stationary problem at [/, = const. In addition,

the two conditions are to be satisfied. Firstly, the wavelength of electromagnetic field A should be much
greater than any representative dimension L of the electromagnetic system, i.e. A = 27‘6/ 04Uy EE, >> L.

Secondly, the displacement current density j, is ignored in a conducting medium in comparison with con-
duction current density j [6]. Only the displacement current takes place in a dielectric medium. Then the

displacement current density is taken into account and the wave phenomena are disregarded.
Using the complex electrical conductivity 7 = y +iweg,, in addition to system (1) the constitutive
relations are written as
z>0: j,=7.E, B, =uH,, @)
z<0:  j,=7E, B, = uuoH;.
Here the subscripts "e" and "i"

Yi=7Y-
The vector and scalar potentials 4 and ¢ are introduced
B=VxA, E=-Vp-ioA . 3)

correspond to the regions where z >0 and z <0, respectively, v, =ioe, g, ,

The Lorenz gauge condition ioV-A—k*¢p=0 (where k> = —iou, Yy ) is used. This condition in the
dielectric in contrast to similar expression in [12] as well as in a conducting media has the form
in z>0: V-A,+ioyuE,c0, =0,

. 4)
in z<0: V-A; + uuyyp;, =0.

As a result, the following equations for potentials are obtained from Maxwell equations (1)
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z2>0: AA, +EJA, =—1t5)0,  Ap, +klp, =0,
2<0: AA, +k2A, =0, Ap, +klp, =0.

Making an assumption that the conductor is infinitely thin, the current density in (5) is written using
the Dirac delta function as j, =/ OS(rM —rty, .

)

The boundary conditions for the tangential and normal components of field vectors are satisfied at
the interface of media. Furthermore, no-field condition should be set at infinity

e.x(E"-E)=0, e.x(H'-H)=0, 6)
e.(B =B )=0, e (i -j)=0. (1)
A(»)=0. (8)

In going from wave problem for current dipole to quasi-stationary problem, the integration along the
closed contour consisting of current dipoles is realized at unvaried complex current amplitude /. With a

view to exclude wave processes in a dielectric medium at z >0, the second summand should be eliminated
from the equations in (5).

As follows from (4), if the displacement current is taken into account in a dielectric medium, in order
to solve the problem in both conducting and dielectric media it is enough to determine the vector potential
distribution.

The normal components of electric intensity on the boundary satisfy the next condition:

e, E|/le. - E7|=[i.l/[7i] <<1. (9)

The terms with factor as a ratio of complex conductivities 7, /¥, should be taken into account only

for determination of 3D electric field in a dielectric medium. Really, on the basis of (4), if V- A, is propor-
tionally with small parameter in (9): V-4, ~7,/7,, then scalar potential has no already such factor —
0, =iV - A, [k ~1ngy.

Contrary to that, for a conducting medium, if V- A, contains the summand with small parameter in

(9), then the corresponding summand of scalar potential @, has small parameter as a factor. Accordingly, the

terms with small parameter (9) can be disregarded for a conducting medium at quasi-stationary problem
statement.

The quasi-stationary conjugation problem is formulated on the basis of (9) otherwise, ignoring the
displacement current density in a dielectric medium. Under such problem formulation for fully three-
dimensional fields the vector potentials A,, 4, and magnetic flux densities B,, B; in all space as well as

scalar potentials ¢, and electric intensity E; in a conducting half-space is found in [12]. In this case the Lo-
renz gauge condition in a dielectric region is identical with the Coulomb gauge

z>0: V-4,=0. (10)
The components of electric intensity which are normal to the boundary are equal to
e, E" =0, e, -E" =0/¢ge,. (11)

Under this formulation, the scalar potential ¢, in a dielectric medium is undetermined. The scalar
potential is not available in the gauge condition (10). The normal electrical field component on plane bound-
ary in (11) is calculated by unknown surface charge density . Then using only vector potential, the electric
intensity in (3) in region z >0 can be evaluated to an accuracy of potential summand. The authors of [8]
note this characteristic property of the field conjugation problem in quasi-stationary statement and reveal that
the solution is single-valued under complementary conditions.

In this paper, the more general formulation of boundary problem (5)—(8) is used under condition (9)
and the transformations valid for closed contour at invariable current flowing along the contour (/, = const)
are performed at the final stage.

Electromagnetic field in a dielectric region. The analytical solution of 3D problem for harmonic
dipole [,td! is found in [7] by the complementary two-dimensional Fourier transform in coordinates, the
efficiency of which is shown in this paper. The expression for the direct Fourier transform in coordinates for
function f(x,y) of two variables has the form
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4% [ [/Gy)- e ) aay, (12)
T
where / is the imaginary unit for the given transform.

Using the integral transformation (12) for equations (5), the next one-dimensional equations for vec-
tor potential transform are derived instead of three-dimensional equations. The equation for vector potential
transform A, in a dielectric region is as follows:

2
ddZ—A;—quj =—th[2° 8(z —zy )ty dl, (13)
where g, =&>+n>—k’> =98> —k’; h=z) =-z), is the vertical coordinate of the source point in the con-
tour. Here the coordinates x, y, z for observation point O present the local coordinates associated with ver-

tical axis through source point M in the contour. The coordinate x is reckoned in the direction parallel to
vector ¢, which is the projection of unit tangent vector ¢ to interface surface (fig. 1, b).

fr¢&n=

—00 —00

*

Taking into account the boundary conditions (6)—(8) expressed in terms of the Fourier transforms of
vector potential, the boundary-value problem can be formulated for ordinary inhomogeneous second-order
differential equation in coordinate z . Then the solution for Fourier transforms of vector potential is obtained
in [7]. Without intermediate calculations, we derive in the form of circulatory integral the solution for Fou-
rier transforms of the vector potential of the serial dipoles distributed along the closed contour at /, = const .

The result for a dielectric medium (at z >0) is

A Lol Hexli—qe Z_ZM|)t_ eXI(_‘]e(Z_ZMl ))

& 2q, 2q,

!
Here ¢ and ¢, are the unit vectors tangential to the initial contour at point M and to the contour mirrored

6+ Y+ V(e e, +Y:2tL}dl. (14)

from interface at point M, respectively. The mirror-reflected contour is indicated in fig. 1, a by dotted line.
The projections of vectors ¢ and ¢, on vertical axis are the same in magnitude but opposite in direction:
t;, =—t,. Their projections on the interface surface are identical in magnitude and direction: #,, =¢, i.e.
t=t, +t,t,=—t, +1.In(14) ¢ = t”/‘tu‘ is the unit vector (fig. 1, b).
The integration functions in (14) have the following form
oo ae=z,)
Hqe+4;
y! =g W= Fe)explgolz=2in)).
(e, +q; a7 +4:7.)
v, = 47 xp( ez =2i1)).
9c(4.7i +4i7e)

(15)

where ¢° = 9% — k.
If condition (9) is taken into consideration and wave phenomena in a dielectric medium are neglected
when ¢, =9, then functions in (15) are equal to

el el w(19) 5
Y; = V; _TeP; :iCOSl// eXp(_ 9(2 y ZMI))(I _7:_6 o = J’ (16)
i W(‘g) Vi w8
vy --Lep, - Lgootdezy))
Vi Vi g

where cosy =£&/9, w(9)=m=19+lw/l92+ia)uyoy.
H H

The vector potential in region z > 0 subject to (14)—(16) is expressed by
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A=A+ Ay =4+ 4]+ )+ 4, (17)

where A, and A; correspond to the first two summands in (14); A, is determined by functions VET‘ and V,
in (16); AZP is proportional to small parameter in (9) and determined by functions P:l and P:z in (16).

In quasi-stationary approximation, the summand A., in the expression for vector potential can be

ignored. At the same time, the component 4., must be considered to calculate scalar potential ¢, .

To derive the solution in terms of physical variables, the inverse Fourier transform in coordinates
should be implemented according to the expression

S = [ [ 1 @m-eCmagn = 17(9)9d8 [ 15 ) ay, (18)

—o0—20 0
where any component in (15), (16) in the general case is expressed as f “Em) = fl* (9) fz* (v).

The result of applying the inverse Fourier transform for all terms in (14)—(16) with the exception of
the terms P, and P:z which determine summand A, are given in [12]. In this paper the expressions in
terms of physical variables for vector potential 4,, and magnetic flux density B, =V xA4,, in a dielectric
medium z > 0 is found and presented in the following form:

A, = A+ A, + 4, =Rl §[i—’—‘—tl aG"jdz, (19)
4n o\r n 4
1
B,=B,+B, +B, =10 f ’Xf _h AL xv(aGeJ dl . (20)
Tl n 0z
Here subsidiary function G, is used instead of the sum of two functions V, and V,
rexpl= 9z =z, )V, (9
Gezzjexp( (Z ZM])) 0( p)dlg (21)
) w9)

where J,(-) is the zero-th order Bessel functions of the first kind.
It is easy to check that function G, in (21) satisfies the Laplace equation AG, =0. In addition, for

any function in the form of ¢,,, (rQMl ) the following integral taken along the closed contour is equal to zero

$Vo '(tle(rQMl))dlMl ==ty Van '(f(rQMl))dlMl =0. (22)

I I
Consequently, in quasi-stationary approximation, expression (19) for vector potential 4,, in a di-

electric medium satisfies the continuity condition
V-4, =0. (23)

This result is in agreement with (10) for alternative formulation of conjugation problem. The solution
of general three-dimensional problem for magnetic field in quasi-stationary formulation can be represented
as three summands, i.e. by field of current contour, field of the current contour mirrored from interface and
by the third component to allow for the electrophysical properties of a medium and current frequency.

Below we determine the scalar potential ¢, and electric intensity E, inregion z > 0.

On the basis of (4) taking into account (23), the scalar potential is determined by summand of vector
potential A4,, containing small parameter (9). Furthermore, as seen from (14) and (16), potential 4,, has a
unique component perpendicular to the interface of media. Then the Fourier transform of scalar potential ¢,,
can be written as

o Ly gl 0P, ), 0P,
0= 4n2yﬂ e e "2 e fal. (24)

The inverse Fourier transform (18) gives the following expressions for the functions presented in
(24)
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oP 9+ g,
@ 2T o 0f ZE1C exp(-8(z— 2 )V, (9p)949
0z 0 w(9)
(25)
OP T
2 = 27| g, exp(=8(z =z, )/, (9p)dS .
oz 0
where J,(-) is the second order Bessel functions of the first kind.
The following subsidiary function G, is introduced to use the condition of contour closure
21T 9+ g,
Gy == [Tl exp(= 9(z = 2,1 ) Mo (9p)dS (26)
ny ws)
oP, 0G
For this function —¢ =——<L  Then the scalar potential is expressed as
Oz  Ox,,
1 oG oG oG, OP
¢, =—2 §; —el(tl-e”)Jr—el(tl-eZ) —| =L =2 (¢, -e. )l . (27)
4y g || O 0z, 0z, Oz

The last formula takes into account that (t e )= (t1 -eH) and (t e, ) =—(t,-e. ) . The integral along the

closed contour of the expression in the square brackets in (27) is equal to zero. Then the following expres-
sion for scalar potential is derived after some transformations

1
9, =i 2§t e, )G dl. (28)
4
The potential component (curl-free component) of electric intensity is written as
I
E, =-Vo, =-io""{(t, e, VG dl . (29)
4n

ep —
i

As seen, the potential component of electric intensity E,, as well as scalar potential ¢, are equal to

zero if only the current contour has no sections perpendicular to the boundary surface.
The vortex (divergence-free) component E,, =—inA, along with potential component E,, =-Vo,

gives the total electric intensity

I t oG
E,-E, +E, :—ia)m§{£——l—{tl o=, -eZ)VGe}}dlz
z

4 ron
: (30)
1 I
=—io£20 § LA/ tuai—(tl e, )05 e, |t =-io®2§ b o xt, VG, ]|
4r 5 |r n 0z op 4r \r n

Note that the third term in the integration function depending on the properties of a conducting me-
dium and field frequency has no component perpendicular to the interface at any configurations and orienta-
tions of the initial current contour. It is seen from (30) that for the vortex part of electric intensity, the verti-
cal sections of the contour do not form tangential components. On the contrary, as follows from (30) E,,

contains the tangential components due to flowing initial current in the direction perpendicular to the plane
media interface.

Electromagnetic field in a conducting region and conditions on the interface surface. As noted,
in quasi-stationary approximation, both the vector and scalar potentials in a conducting medium have no
small parameter. In this case, the analytical solution of the problem for magnetic and electric fields in a con-
ducting region is found in [12]. Below the expressions for the vector and scalar potentials and electric inten-
sity are given again to present completely the analytical solution of 3D problem.

The vector and scalar potentials in a conducting half-space are equal to

1 oG,
Ai = u:no §{tGi2 +1, Ell}dl, (3 1)
!
0, =i 20 §(¢-e.)G,dI. (32)
T

1

8 ISSN 1607-7970. Texuiuna enexmpoounamira. 2018. Ne 1



where Gy =2f explg;z ~ 92, Vo(9p) 4 . Gy =2 explg,2 =92, Mo(9p) g 4o (33)
g w(9) g w(8)

The electric intensity is expressed by the sum of vortex component E;;, = —iwA; and potential com-
ponent E,, =-Vo,. After some transformations, the expression for electric intensity in a conducting medium

takes the form

E, =E, +E, =-io “Xi“ f {tGl.z —(t.ez)égz ep}dl- (34)

Note, here the terms do not correspond of vortex and potential components.

As follows from (34), in the problem for quasi-stationary electromagnetic field at plane interface in a
conducting medium the electric intensity and current density have no the components perpendicular to the
interface without reference to the configuration of the contour with alternating current. Expression (34) is a
consequence of the solution of the wave problem in field theory. At the same time, as shown in [12] the in-
ference for quasi-stationary problem about the null vertical component of electric intensity in a conducting
medium has more general reasons. Such conclusion follows from the unique zero solution of the boundary
problem of homogeneous second-order differential equation for z-component of electric intensity E,, with

zero value on the boundary.
The null vertical components of induced current density in a conducting medium lead to the relations

for electric intensity in a dielectric medium E (¢) and for electric charge surface density o(z) at the plane
interface. The result is valid for any time variation of current and can be written in the following form:

ﬁ:E;(,):_zw, (35)
ey ot
where
My (z=00) _ﬁ&%("%)m (36)
ot 4t Ot r

!
is the vertical component of electric intensity induced by initial alternating current /,, (t)

As follows from superposition principle, the expression (36) remains true for any initial system of
closed current contours.

The boundary conditions (6) for the tangential component and condition (7) for the normal compo-
nent of magnetic flux density are satisfied. This is verified by above presented expressions for the vector po-
tential and electric intensity.

We give an example of the current contour configuration typical for technological systems. Central
section of current contour /; is located parallel to the plane surface of conducting body (see fig. 2). The sinu-

soidal current is supplied by two parallel conductors /, , oriented perpendicularly to the plane of the central

section of the contour (fig. 2).

Let us analyze the electric intensity distribution in a dielectric region on the interface of the media
(z=0) and find the charge surface density.

The electric intensity for the considered initial spatial contour on the interface in a dielectric half-

space has both vertical component £ and tangential component E, (which coincides with the tangential

component in a conducting medium). Since at z =0 the distances from the observation point to the source
points on the initial and mirror reflected contours are the same (7 =7, ) and the projections of tangent vectors

are equal (¢, =¢,), the sum of the first two terms in (30) does not create the component parallel to the plane

surface.
The tangential component E; for the current contour shown in fig. 2 can be presented by sum of two

contour integrals along the sections /, and /,

E” = EH] +EH2 =im MOIO J.tH aGe dl—io MO[O I(tl 'ez)aGe epdl. (37)
4n o " Oz 4 : op
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Note that each separate term in (37) does not satisfy the continuity condition and can not be regarded
to separate electric intensity.

As a result of integration along the vertical elements of the contour, the following expression for the
term E, in (37) is obtained
ol FeplOh) o0 ve, g, 9pa e o 38)
2n w(9)

0

E,=io

where £ is the distance from the central part of the contour to the surface; e, , =p,, / |p 1,z| .
The value given in (38) must be added to electric intensity E|; due to current flow through the cen-

tral horizontal section.

For the example, the surface density of electric charge is found. As the distribution of electric charge
is determined only by sections of the contour which are perpendicular to the interface between the media, in
this example the charge distribution is the same for any configuration of the central part of the contour.

For the chosen geometry of the contour, the vertical component of vector potential and then the sur-
face charge density can be presented by simple algebraic expression

o = PEot T[(Zz 03" - +p2)71/2}dz _ [0%E0Mo ; 1nh+(h2 o) (39)
47 Oh M 2 M 1 M o 0 h+(h2 +p12)1/2 .

Here P12,2 = (xQ — X5 )2 +(yQ - ym)z, where (xl, yl) and (xz, yz) are the coordinates on the plane surface

with two vertical conductors along which the current is directed to the central section of the contour and
from it, respectively.
The results of calculation according to (39) are shown in fig. 3 by lines marked as o/o,, = const,

where o, is the maximum surface density of distributed electric charge.

Conclusion. The analytical solution for three-dimensional quasi-stationary electromagnetic field of
alternating current flowing along the contour near the plane surface of conducting magnetizing body is pre-
sented without restrictions on the contour configuration, electrophysical properties of media and field fre-
quency. In addition to the results presented earlier, the solution for scalar potential and electric intensity in
the entire dielectric half-space is found under quasi-stationary approximation using the displacement currents
in dielectric region.

As a revealed peculiarity of the distribution of quasi-stationary electromagnetic field for the systems
with plane interface between the dielectric and conducting media, the components of electric intensity and
current density which are perpendicular to boundary surface are not available (i.e. equal to zero) in the con-
ducting medium. This result holds true for any spatial distribution of the initial system of non-stationary cur-
rents.

As a consequence, at the interface of media the surface density of electric charge and the vertical
component of electric intensity in dielectric medium are determined only by the normal component of the
induced electric field of initial current system. The electric field of the surface charge completely compen-
sates for the vertical component of electric intensity of induced initial electric field. In this case, the electric
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charge creates both the vertical component of electric intensity and component parallel to the interface of
media.
The author would like to thank Dr. .M Kucheriava for helpful discussion and comments.
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XHero. Buxoosauu 3 UKOpUCmMaHHs 8 K8a3iCmayioHapHOMy HAOIUNCEHHI CMPYMI8 3MilyeHHs 8 JieleKmpUuYHiltl 00aacmi,
Ha 000amok 00 pe3yIbmamis, npeocmasienux paniule, 3HatoeHo Po38'a30K 05 CKANAPHO20 NOMEHYIATY ma HAnpyice-
HOCMI eleKMpUYHO20 NOJISL 8 YCbOMY OleleKmpudHoMy nisnpocmopi. Hacniokom ecmanoseieno2o gakmy 6iocymuocmi
KOMNOHEHMI8 HanpyHCeHOCMi eNeKMPUYHO20 NOJS M 2YCIMUHYU CIMPYMY 6 elIeKMpPOnpoGionomMy cepedosuuyi, nepneHou-
KVIAPHUX 00 2panuyi nooiny cepedosuuy, € NOGHA KOMNEHCAYis NOBEPXHEBUM 3aAPAOOM 6EPMUKANLHOI KOMNOHEHMU iH-
O0YKOBAMOI HANPYIHCEHOCMI eNeKMPULHO20 NOJA cCUCmeMU GUXIOH020 cmpymy. Pozenanymo npuknad oas 3Haxo0dicenns
HANPYHCEHOCMI eNeKMPUYHO020 N0 MA NOBEPXHES0I eYCMUHU eNeKMPUUHO20 3apady 01 Kougizypayii koumypy 3i
CmpymMom, xapaxkmepoi 0as mexnonoeiunux cucmem. bion. 13, puc. 3.

Knrwowuogi cnosa: aHaniTHIHUNA METO/1, IPOCTOPOBHI KOHTYP 31 CTPYMOM, BUXPOBI CTPYMH, TPUBHMIpPHE KBa3icTalliOHa-
pHE eJIeKTpOMarHiTHe IoJe.
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TPEXMEPHOE KBASUCTAIIMOHAPHOE 3JIEKTPOMATHUTHOE MMOJIE, CO3JAHHOE
MMPOU3BOJIBHBIM KOHTYPOM C TOKOM BBJIN3HU DJIEKTPOITPOBOJHOI'O TEJIA
10.M. Bacenxkuii, nokt.rexs.Hayk, K.K. /I3106a

HNucturyT 3nekrponunamuku HAH Ykpaunsl,

np. llepemornu, 56, Kues, 03057, Ykpauna,

e-mail: yuriy.vasetsky@gmail.com

Paspaboman ananumuueckuti memoo 0ns paciema mpexmepHo2o KEA3UCMAYUOHAPHO2O INEKMPOMASHUMHO20 RO,
CO30aHH020 MOKOM, NPOMEKAIOWUM NO HPOU3EOTLHOMY NPOCMPAHCMEEHHOMY KOHMYPY 60AU3U DJIEKMPONPOBOOHO20
mena ¢ nIoCKou noeepxHocmyio. Mcnonv3ys 6 KeasucmayuoHapHoM NPUOIUICEHUU MOKO8 CMeWeHUs 8 OUdIeKmpuye-
cKotl obnacmu, 8 0ONOAHEHUE K Pe3yTbmamam, npeocmagieHHbIM panee, HatloeHo peuleHue O CKAISIPHO20 NOMEHYUA-
214 U HANPSAACEHHOCIU INIEKMPULECKO20 NOJIAL 80 6CeM OUINeKmpudeckom noaynpocmpancmee. Credcmseuem ycmaHos-
JIEHHO20 (haxma omcymcemeust KOMNOHEHM HANPSNCEHHOCMU JJIeKMPULECKO20 NOJSL U HIOMHOCHU MOKA 8 dAEeKMPOnpO-
so0suell cpede, NEPREHOUKYISIPHLIX K 2panuye pazoena cpeo, sIGIsemcs NOAHAsL KOMREHCAYUsl NOBEPXHOCHIHbIM 3apsi-
00M BEPMUKATLHOLU KOMAIOHEHMbL UHOVYUPOBAHHOU HANPSICEHHOCMU JIEKMPULECKO20 NOJISL CUCTEMbL UCXOOHO20 MO-
Kka. Paccmompen npumep 0nsi Haxodcoenuss HARPIHCEHHOCIU INEKMPUYECKO20 NOSL U NOBEPXHOCMHOU NIOMHOCMU
INEKMPUYECKO20 3apsi0a Oisi KOHPU2Ypayuu KOHMypa ¢ MOKOM, XapaKmepHou 015l MEeXHOA0UYECKUX CUCTIEM.

buba. 13, puc. 3.

Knrwouesvie cnosa: aHanUTHYECKUN METOJ, IPOCTPAHCTBEHHBIM KOHTYpP C TOKOM, BUXpPEBble TOKH, TPEXMEpPHOE KBa3u-
CTalMOHAPHOE AJIEKTPOMArHUTHOE TOJIE.
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