УДК 621.314

DOI: https://doi.org/10.15407/techned2019.06.030

ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ ВИКОРИСТАННЯ АВТОТРАНСФОРМАТОРА ШЛЯХОМ ВАРІЮВАННЯ ГУСТИНИ СТРУМУ В ОКРЕМИХ СЕКЦІЯХ ЙОГО ОБВИТКИ

К.О. Липківський^{*}, докт.техн.наук, А.Г. Можаровський^{**}, канд.техн.наук Інститут електродинаміки НАН України, пр. Перемоги, 56, Київ, 03057, Україна. E-mail: <u>lypkivskyk@ukr.net</u>; <u>AnatMozhrvsk@ukr.net</u>

Ефективність використання встановленої потужності трансформуючого елемента з секціонованою обвиткою (discrete smart transformer) у складі трансформаторно-ключових виконавчих структур (TKBC) перетворювачів напруги змінного струму є важливим показником, що визначає параметри та масогабаритні характеристики пристрою у цілому. Таким трансформуючим елементам у процесі виконання TKBC свого функціонального призначення притаманна нерівномірна зміна величин струмів у окремих секціях і, як наслідок цього, зміна сумарного струмового завантаження обвитки. З метою підвищення ефективності використання автотрансформатора запропоновано застосовувати вибіркове варіювання густини струму в окремих секціях обвитки з контролем його теплового стану. Наведено конкретний приклад виконання цісї процедури, який підтвердив можливість такого підвищення. Бібл. 9, табл. 1, рис. 4.

Ключові слова: трансформаторно-ключова виконавча структура, discrete smart transformer, перетворювач напруги змінного струму, секціонована обвитка, варіювання густини струму, тепловий стан.

Стабілізатори напруги змінного струму з трансформаторно-ключовими виконавчими структурами – ТКВС (discrete smart transformer, intelligent transformer [1, 2]), що мають у своєму складі трансформуючі елементи (ТЕ) та напівпровідникові ключові елементи (КЕ) з природньою комутацією, виконують своє функціональне призначення, апріорі не вносячи спотворень в усталених режимах у форми вихідної напруги та вхідного струму [3]. Це досягається завдяки використанню дискретно-разового керування (discrete-time control [4]) ключами, які реалізують у процесі зміни вхідної напруги в діапазоні U_{1min}÷U_{1max} необхідне для стабілізації вихідної напруги коригування коефіцієнта передачі ТКВС. Кожному з дискретних значень цього коефіцієнта відповідає певний стан виконавчої структури, у якому ТКВС працює як двохобвитковий трансформатор з цим коефіцієнтом передачі за напругою.

У разі зміни в процесі роботи стану ТКВС (навіть за постійної вихідної потужності, тобто, і струму) змінюється не тільки співвідношення витків вхідного та вихідного кола TE, але й струми у окремих секціях та, як наслідок, сумарне струмове завантаження всієї обвитки, яке в жодному з робочих станів не може бути максимальним. У [5] було розроблено методику розрахунку таких секціонованих трансформуючих елементів, яка враховує цю особливість та дає змогу більш ефективно використовувати встановлену потужність TE – збільшувати припустиму потужність споживача за обраного TE або для заданої вихідної потужності обирати менший типорозмір магнітопроводу TE. Оскільки цей показник визначає масогабаритні характеристики перетворювача, у [6] було проаналізовано можливість та особливості його підвищення шляхом перерозподілу втрат енергії у компонентах TE у разі переходу в осерді до електротехнічної сталі з меншими питомими втратами або/та збільшення значення величини магнітної індукції в межах лінійної частини характеристики намагнічування. Проте притаманна TKBC багатоваріантність побудови структури та компонентів TE вказує на доцільність пошуків варіантів подальшого підвищення ефективності використання встановленої потужності трансформуючого елемента TKBC.

Метою роботи є підвищення ефективності використання встановленої потужності секціонованого автотрансформатора ТКВС стабілізатора напруги змінного струму у випадку перерозподілу втрат енергії у його елементах шляхом цілеспрямованого вибіркового варіювання густини струму в окремих секціях його обвитки.

Розглянута у [6] конфігурація ТКВС із шістьма ключовими елементами (рис. 1), яка може в процесі виконання свого функціонального призначення працювати в одному з дев'яти станів з відповідними коефіцієнтами передачі за напругою, забезпечує стабілізацію вихідної напруги на рівні 220 В ыз похибкою ±6,6 В (±3%) за відхилень вхідної напруги у діапазоні 168 ÷ 288 В. У разі використання

[©] Липківський К.О., Можаровський А.Г., 2019

^{*}ORCID ID http://orcid.org/0000-0002-3292-1360; ** http://orcid.org/0000-0001-9801-2728

магнітопроводу ШЛ40×80 (маса 7,4 кг [7]) з електротехнічної сталі 3413 (питомі втрати за обраної магнітної індукції 1,5 Тл дорівнюють 1,13 Вт/кг [8]) та густині струму у секціях обвитки 1,7 А/мм² автотрансформатор (АТ) такої ТКВС дає змогу живити споживача потужністю 3,39 кВт. Найбільша температура в елементах АТ дорівнює при цьому t_{max}=81°C, обраній у [6] за максимальне припустиме значення.

Згідно з методикою [5], розрахунок цього АТ проводився для першого стану ТКВС (увімкнені ключі V1, V4) з найбільшим сумарним струмовим завантаженням обвитки, коли втрати у міді обвитки ΔP_{cu} складали 24,63 Вт, у сталі – $\Delta P_{fe} = 8,69$ Вт, а загальні втрати $\Delta P_{\Sigma} = 33,22$ Вт. "Внесок" у втрати окремих секцій обвитки видно з даних таблиці, де розглянутий у [6] варіант ТКВС позначено літерою А. Сумарне струмове завантаження "забезпечується" базовою секцією W₀ та трьома регулювальними секціями W₁, W₂, W₃, через які у цьому стані протікає найбільший можливий для секцій струм, що за величиною дорівнює струму навантаження. При цьому четверта регулювальна секція є незадіяною й відповідно струм у W₄ дорівнює 0.

	A			В			С		
	ј _{обв}	j=1	j=9	ј _{обв}	j=1	j=9	ј _{обв}	j=1	j=9
	(A/MM^2)	V1, V4	V3, V4	(A/MM^2)	V1, V4	V3, V4	(A/MM^2)	V1, V4	V3, V4
$\Delta P_{W0} (BT)$	1,7	10,65	6,59	1,36	8,86	5,48	1,42	9,66	5,97
ΔP_{W1} (Bt)	1,7	6,01	0,27	1,67	6,41	0,29	1,75	6,99	0,32
ΔP_{W2} (Bt)	1,7	3,72	2,30	1,70	3,95	2,44	1,78	4,31	2,66
ΔP_{W3} (Bt)	1,7	4,24	2,62	1,71	4,48	2,77	1,78	4,88	3,02
ΔP_{W4} (BT)	1,7	0	7,05	3,25	0	13,79	3,39	0	15,03
$\Delta P_{\Sigma W} (BT)$		24,63	18,85		23,70	24,78		25,84	27,01
ΔP_{FE} (Bt)		8,69	9,80		8,69	9,80		8,69	9,80
$\Delta\Sigma P$ (Bt)		33,32	28,65		32,40	34,58		34,53	36,81
t_{max} (°C)		81,0	75,4		79,1	79,1		81,0	81,0
t_{min} (°C)		70,2	67,6		70,1	72,2		71,5	73,6
Δt_{max} (°C)		10,8	7,8		9,0	6,9		9,5	7,4
Р _н (кВт)	3,39				3,39			3,54	

Рис. 1

Зменшення найбільших втрат у базовій секції W_0 шляхом зменшення густини струму у ній (тобто збільшення її площі у вікні осердя) дало б змогу підвищити ефективність використання встановленої потужності АТ. Це за фіксованого значення $t_{max}=81^{\circ}$ С можна досягти лише у випадку відповідного збільшення густини струму у незадіяній четвертій секції W_4 (зменшенні її площі у вікні осердя). Проте ця секція задіяна при роботі ТКВС у 7, 8 та 9 станах. У таблиці для дев'ятого стану (увімкнені ключі V3, V6), який є другим за сумарним струмовим завантаженням обвитки, також наведено втрати в елементах АТ. Тут найбільший "внесок" у втрати вносить саме четверта регулювальна секція W_4 . Таким чином, струмове "розвантаження" першого (визначального для розрахунку АТ) стану призводить до струмового "підвантаження" дев'ятого стану, тобто у випадку вибіркового варіювання густини струму в окремих секціях необхідно порівнювати зміну ситуації у цих двох станах. Проведене зменшення густини струму в секції W_0 до 1,36 А/мм² та її збільшення до 3,25 А/мм² у секції W_4 дало можливість отримати ТКВС (позначимо цей проміжний варіант літерою В), у якій найвища температура в елементах АТ зрівнялася в обох станах – знизилася у першому та зросла у дев'ятому до 79,1°, що менше за t_{max} .

Це дає змогу додаткового одночасного підвищення густини струму у всіх секціях обвитки приблизно на 4,4%, за якого в елементах АТ буде досягнута обрана за максимальну температура 81°С. Отриманий таким чином варіант ТКВС позначено у таблиці літерою С.

Порівняння варіантів А та С свідчить про доцільність виконаної процедури – припустиме максимальне значення вихідної потужності зросло з 3,39 кВт до 3,54 кВт. (Зауважимо, що рівень підвищення ефективності використання встановленої потужності АТ за вибіркового варіювання густини струму в окремих секціях його обвитки суттєво залежить від обраної конфігурації ТКВС). Аналіз зміни даних у першому стані показує, що незважаючи на деяке (на 3,6%) зростання абсолютного значення сумарних втрат у елементах AT (нормовані за номінальною потужністю вони навіть дещо зменшуються), максимальна температура залишається на тому самому рівні. Це можна трактувати як наслідок збільшення ентропії, тобто зменшення нерівномірності нагріву елементів автотрансформатора Δt з 10,8°C до 9,5°C. Більш вагомо це виявляється у разі порівняння першого і дев'ятого станів варіанта C: у дев'ятому втрати зросли приблизно на 6,5% відносно першого стану, але суттєво зменшилася нерівномірність нагріву – з 9,5°C до 7,4°C і максимальна температура не змінилася.

а

Рис. 4

Із застосуванням програми COMSOL [9] отримано результати 3D моделювання теплового стану автотрансформатора, які наочно ілюструють рисунки 3, 4, 5: на рис. 1 – варіант А (тут і далі а – перший стан, б – дев'ятий стан), рис. 2 – варіант В, рис. 3 – варіант С. (Моделювання проводилися за зовнішньої температури 50°С; всі складові моделі вважаються ізотропними, й їхні теплопровідності становлять: осердя – λ_{ocp} =4 Вт/(м×К), котушки $-\lambda_{\kappa mu} = 0,2$ Вт/(м×К), а всі секції обвитки мають однакову величину - $\lambda_{o \delta s} = 2$ Вт/(м×К). Тепловіддача незмінна з усіх поверхонь, а її величина становить $\alpha = 11,77 \text{ Bt/(} \text{м}^2 \times \text{K}\text{)}.$ Оскільки конструкція АТ вважається симетричною у всіх трьох площинах координат відносно центра мас, при моделюванні розглядається лише 1/8 частина від його повної моделі). На рисунках найбільш гаряча область у діапазоні температур 80,7°С – 81,0°С виділена темним кольором, а наведені ізотерми відповідають температурам: 1 – 80°С; $2 - 78,8^{\circ}C; \quad 3 - 78,0^{\circ}C; \quad 4 - 76,0^{\circ}C;$ $5 - 75,1^{\circ}C; 6 - 74,0^{\circ}C; 7 - 72,0^{\circ}C.$

Зміна положень позначених на моделях меж секцій обвитки (базова W_0 найближча до центрального стрижня, далі — регулювальні секції W_1 , W_2 , W_3 , W_4) свідчить, що у разі переходу від початкового ва-

ріанта A до варіантів Б та C відбувається передбачене при цьому збільшення площі, яку займає у вікні осердя секція W_0 (від 1302 мм² до 1505 мм²) та відповідне зменшення площі секції W_4 (від 637 мм² до 335 мм²).

б

Як видно, два стани варіанта А ТКВС суттєво відрізняються не тільки значенням найвищої температури (81°С – у першому та 79,0°С – у дев'ятому), але й характером її розподілу. Після виконаного вибіркового варіювання густини струму у двох секціях (W_0 та W_4) найвищі температури в обох станах зрівнюються ($t_{\text{найв}}=79$ °С), проте неоднорідність розподілу температуру залишається. Ще більше вона прослідковується у кінцевому варіанті С, але за однакової найвищої температури, що дорівнює t_{max} . У дев'ятому стані, якому притаманні більші втрати енергії в елементах АТ, але менша температурна неоднорідність, найбільш гаряча зона зміщується у бік регулювальних секцій зовнішньої сторони обвитки (W_1 , W_2 , W_3) внаслідок (можна припустити) охолоджуючої дії стрижня осердя, що не змінив ступінь нагріву (вважаємо, що втрати в ньому не змінилися) й має нижчу температуру. Виконане порівняння двох розглянутих станів ТКВС, які після вибіркового варіювання густини струму в окремих секціях обидва стали визначальними під час розрахунку автотрансформатора, підтверджує, що верхня межа струмового підвантаження обвитки при цьому визначається не величиною втрат енергії в елементах АТ, тобто загальним тепловиділенням, а досягненням найвищої температури об'єкта прийнятої за максимальне припустиме значення t_{max} . Таким чином, подальше підвищення ефективності використання встановленої потужності секціонованого автотрансформатора у складі ТКВС можливо лише у разі збільшення значення t_{max} , яке обмежується, переважно, властивостями ізоляції обвитки, і у сучасних трансформуючих елементах потужністю одиниці-десятки кВт може обиратися на рівні не менше та навіть більше 105°С [7]. Аналіз показав, що залежність $P_{\rm H} = f(t_{max})$ має близький до лінійного характер. Для обраного у роботі типорозміру магнітопроводу цю залежність може бути представлено у вигляді $P_{\rm H}[BT] = (56,3t_{max} - 1133)$. Тобто при збільшенні t_{max} до 93°С від стабілізатора напруги з такою ТКВС може живитися споживач потужністю 4,1 кВт (маємо підвищення ефективності використання встановленої потужності АТ на 16%), а за $t_{max} = 105°C – потужністю 4,8 кВт (підвищення ефективності на 35%).$

Висновки. Запропонований перерозподіл втрат потужності в елементах секціонованого автотрансформатора ТКВС стабілізатора напруги змінного струму шляхом вибіркового варіювання густини струму в окремих секціях його обвитки призводить до зменшення температурної неоднорідності та рівня нагріву (зменшення найвищої температури об'єкта). Це дає змогу за обраного типорозміру магнітопроводу збільшити максимально припустиме значення вихідної потужності, тобто підвищити ефективність використання його встановленої (розрахункової) потужності.

Стаття написана в процесі виконання НДР "Рестан" ("Розвиток та узагальнення теорії трансформаторно-ключових виконавчих структур (ТКВС) перетворювачів напруги з урахуванням багатоваріантності схемотехнічних рішень та мультифізичності процесів"), державний реєстраційний номер 0115U002579.

1. Willems W., Vandoorn T.L., De Kooning, J.D., Vandevelde L. Development of a smart transformer to control the power exchange of a microgrid. 4th International *Conf. Innovative Smart Grid Technologies Conference Europe* (ISGT - Europe 2013), IEEE, 6-9 Oct. 2013, At Lyngby, Denmark. Pp. 1–5. DOI: http://dx.doi.org/ 10.1109/ISGTEurope.2013.6695300

2. Gehm, A.A., Quevedo, J.D.O., Mallmann, E.A., Fricke, L.A., Martins, M.L.D.S., & Beltrame, R.C. (2015, November). Development of a supervisory system for an intelligent transformer. In Power *Electronics Conference and Ist Southern Power Electronics Conference* (COBEP/SPEC), 2015 IEEE 13th Brazilian. (Pp. 1-6).

DOI: http://dx.doi.org/10.1109/COBEP.2015.7420242

3. Липковский К.А. Трансформаторно-ключевые исполнительные структуры преобразователей переменного напряжения. К.: Наукова думка, 1983. 216 с.

4. Bimal, K. Bose. Power Electronics – Why the Field is so Exciting. *IEEE Power Electronics Society Newsletter Fourth Quarter*. 2007. Vol. 19. No 4. Pp. 11–20.

5. Липківський К.О., Можаровський А.Г. Моделювання трансформуючих елементів з секціонуванням обвиток у складі перетворювачів напруги змінного струму. *Технічна електродинаміка*. 2016. № 3. С. 39–44. DOI: https://doi.org/10.15407/techned2016.03.039

6. Липківський К.О., Можаровський А.Г. Вплив розподілу втрат енергії в елементах автотрансформатора трансформаторно-ключової виконавчої структури стабілізатора напруги на ефективність використання його встановленої потужності. *Праці Інституту електродинаміки НАН України*. 2019. Вип. 53. С. 60–64.

7. Белопольский И.И., Каретникова Е.И., Пикалова Л.Г. Расчет трансформаторов и дросселей малой мощности. М.: Энергия, 1973. 400 с.

8. ГОСТ 27427.1-83 Сталь электротехническая тонколистовая.

9. COMSOL Multiphysics - http://www.comsol.com.

УДК 621.314

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ АВТОТРАНСФОРМАТОРА ПУТЕМ ВАРЬИРОВАНИЯ ПЛОТНОСТИ ТОКА В ОТДЕЛЬНЫХ СЕКЦИЯХ ЕГО ОБМОТКИ

К.А. Липковский, докт.техн.наук, А.Г. Можаровский, канд.техн.наук

Институт электродинамики НАН Украины,

пр. Победы, 56, Киев, 03057, Украина. E-mail: <u>lypkivskyk@ukr.net</u> ; <u>AnatMozhrvsk@ukr.net</u>

Эффективность использования установленной мощности трансформирующего элемента с секционированной обмоткой (discrete smart transformer) в составе трансформаторно-ключевых исполнительных структур (ТКИС) преобразователей напряжения переменного тока является важным показателем, определяющим параметры и массогабаритные характеристики устройства в целом. Таким трансформирующим элементам в процессе выполнения ТКВС своего функционального назначения присущи неравномерное изменение величин токов в отдельных секциях и, как следствие этого, изменение суммарной токовой загрузки витков. С целью повышения эффективности использования автотрансформатора предложено применять выборочное варьирования плотности тока в отдельных секциях витков с контролем его теплового состояния. Приведен конкретный пример выполнения этой процедуры, который подтвердил возможность такого повышения. Библ. 1, рис. 4.

Ключевые слова: трансформаторно-ключевая исполнительная структура, discrete smart transformer, преобразователь напряжения переменного тока, секционированная обмотка, варьирование плотности тока, тепловое состояние.

IMPROVING THE EFFICIENCY OF USING AN AUTOTRANSFORMER BY VARYING THE CURRENT DENSITY IN INDIVIDUAL SECTIONS OF ITS WINDING

K.O. Lypkivskyi, A.G. Mozharovskyi

Institute of Electrodynamics National Academy of Sciences of Ukraine,

pr. Peremohy, 56, Kyiv, 03057, Ukraine. E-mail: <u>lypkivskyk@ukr.net</u> ; <u>AnatMozhrvsk@ukr.net</u>

The efficiency of using the installed power of a transforming element with a sectioned winding in the composition of transformer-and-switches structures (TSES) of AC voltage converters is an important indicator that determines the parameters and weight and size characteristics of the device in generally. device as a whole. Such transforming elements in the process of performing the TSES of their functional purpose are characterized by an uneven change in the magnitudes of the currents in individual sections and, as a consequence, a change in the total current load of the turns. In order to increase the efficiency of using the autotransformer, it has been proposed to apply selective variation of the current density in separate sections of the coils with control of its thermal state. A specific example is given of performing the possibility of such an increase. References 9, table 1, figures 4.

Key words: transformer-and-switches executive, discrete smart transformer, discrete smart transformer, AC voltage converter, partitioned winding, variation of current density, thermal processes.

1. Willems W., Vandoorn T.L., De Kooning, J.D., Vandevelde L. Development of a smart transformer to control the power exchange of a microgrid. 4th International *Conf. Innovative Smart Grid Technologies Conference Europe* (ISGT - Europe 2013), IEEE, 6-9 Oct. 2013, At Lyngby, Denmark. Pp. 1–5. DOI: http://dx.doi.org/ 10.1109/ISGTEurope.2013.6695300

DOI: http://dx.doi.org/10.1109/ISG1Europe.2013.0695300

2. Gehm, A.A., Quevedo, J.D.O., Mallmann, E.A., Fricke, L.A., Martins, M.L.D.S., & Beltrame, R.C. (2015, November). Development of a supervisory system for an intelligent transformer. In Power *Electronics Conference and 1st Southern Power Electronics Conference* (COBEP/SPEC), 2015 IEEE 13th Brazilian. (Pp. 1-6). DOI: http://dx.doi.org/10.1109/COBEP.2015.7420242

3. Lypkivskyi K.O. Transformer-and-Switches Executive Structures of Alternating Current Voltage Converters. Kiev: Naukova Dumka, 1983. 216 p. (Rus)

4. Bimal, K. Bose. Power Electronics – Why the Field is so Exciting. *IEEE Power Electronics Society Newsletter Fourth Quarter*. 2007. Vol. 19. No 4. Pp. 11–20.

5. Lypkivskyi K.O., Mozharovskyi A.G. Simulation of the transformative elements with sectioning of the windings as part of AC voltage source converters. Tekhnichna Elektrodynamika. 2016. No 3. Pp. 39–44. (Ukr) DOI: https://doi.org/10.15407/techned2016.03.039

6. Lypkivskyi K.O., Mozharovskyi A.G. Influence of distribution of energy losses in the elements of the autotransformer of the transformer-and-switches executive structure of the voltage stabilizer on the efficiency of using its installed power. *Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy*. 2019. No 53. Pp. 60–64. (Ukr)

7. Belopolskii I.I., Karetnikova E.I., Pikalova L.G. Calculation of low-power transformers and reactors. Moskva: Energiia, 1973. 400 p. (Rus)

8. GOST 27427.1-83 Rolled Electrical Steel. (Rus)

9. COMSOL Multiphysics – <u>http://www.comsol.com</u>.

Надійшла: 20.05.2019 Остаточний варіант: 27.05.2019