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The approach to the determination of the probability properties (probability density function, probability distribution
function, mathematical expectation) of the electrical characteristics of the circuits of electric discharge installations
whose active resistance can be changed at random is proposed. It is assumed that such a stochastic resistance is char-
acterized by a continuous random variable whose probabilistic properties are known. As an example, probabilistic
properties of the voltage on a capacitor in a first-order circuit with a stochastic active resistance having a uniform
probability distribution were investigated. References 10, figures 3.
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Introduction. The electric load resistance of electric discharge installations (EDI) using linear [1-3] and
nonlinear [4] reservoir capacitors, usually depends nonlinearly on the reservoir capacitor characteristics [1, 5], or it sto-
chastically changes [2, 7]. This fact complicates significantly both the analysis of transient processes in EDI's circuits
and the synthesis of their new structures [5, 7, 8]. If EDI load resistance varies randomly, all of the basic characteristics
(in particular charge voltage of the reservoir capacitor and discharge currents in the load) also become random vari-
ables. At the same time, in order to optimize the operating modes of the EDI [2, 4, 6] and the synthesis of their new
structures [5], it is very important to estimate the change ranges of the main characteristics of EDI if any parameter of
their circuits (capacitance, inductance or active resistance) varies randomly. Therefore, the determination of the prob-
abilistic properties of the electrical characteristics of the EDI's circuits with elements whose parameters can vary sto-
chastically is an important scientific task.

The aim of the work was to determine the probabilistic properties of the electrical characteristics of the EDI
with reservoir capacitor and stochastically changing active resistance.

To solve the problem in the paper, methods for determining the probability characteristics of functional trans-
formations over random variables, presented in [7-9], were used.

In the research it is assumed that the active resistance R of the capacitor charging circuit of EDI is a stochastic
parameter, and it is linear during the discharge time of the capacitor, but it can vary between its discharges according to
the known law of probability distribution.

The assumption is also made that R is a continuous random variable (that is, it's possible values  constitute a
continuous set), and the law of variation of continuous random variable R is known — i.e. it's probabilistic characteristics
(the probability density function f{7) and the probability distribution function F(») with all their parameters are known).

Using the probabilistic characteristics of functional transformations over random variables for deter-
mining the probabilistic properties of electrical characteristics of the circuit with a stochastically changing pa-
rameter. From a mathematical point of view, the electrical characteristics of the EDI's circuit are functional transforma-
tions of the circuit parameters. Thus, if one-valued functional transformation of a random variable X is given: Y = ¢(X),
then Y will also be a random variable, and its possible values y will be completely determined by the possible values x
of the random variable X.

According to our assumptions, we assume that for a continuous random variable X its probability density func-

tion fy (x) is known. Then if the functional transformation ¥ = @(X) is monotonic, then its probability density function
Jfy(») is defined by the following expression [7]:

Sy = fx )X (). )]
Here x(y) is the inverse function with respect to function y(x), and |x'( y)| is the absolute value of the derivative of this

inverse function.
To find the mathematical expectation of the unknown continuous random variable ¥ = ¢(X), the following
formula can be used [7]:

M[Y]= Tow)- fi (x)dx. @
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Let's use the considered probabilistic characteristics of functional transformations over random variables to de-
termine the probabilistic properties of electrical characteristics in EDI's circuit of the first order with the stochastically
changing active resistance R.

As an example, we consider one of the most popular distributions of random variable — the uniform distribution.

Determination of the probabilistic properties of the capacitor voltage in an electrical circuit with a
stochastic active resistance having a uniform probability distribution. Fig. 1 shows the EDI's charging circuit of the

first order (with one reactive element) with a stochastically varying active
c resistance R, through which the capacitor C is charged from the DC voltage

VT
A&H Ii generator (DCVG) of the voltage Upcye. The resistance R is a random vari-

able that is characterized by a continuous uniform distribution over the inter-
orH | | Yprm ﬂ r val [rm,-,,; rmax] ‘Re [rm,-,,; rmax] . Within the limits of separate transient capaci-

tor charging process initiated by the opening of the thyristor V7, the value R is
» a fixed value and does not change during this transient process. However, in
Fig. 1 each subsequent transient the value R can randomly take another

value R € [rmm;rmax]. In view of the fact that R is a random variable, the ca-

pacitor voltage Uc(¢) (which depends on the value R) will also be a random variable. Let's define the probabilistic proper-
ties of the random variable Uc (7).

The probability distribution function Fp(r) of a uniformly distributed random variable R is determined by the
expression [7]
0, r<r

min
FR(}"):P(R<I’)= (r_rmin)/(rmax_rmin)’ re[rm[n;rmax]. 3)
1, 7> Tax

Here P(R < r) is the probability that a random variable R will take a value less than r.
The probability density function fp(r) (which by definition is a derivative of the probability distribution func-

tion: f(r) = Fp(r)) is given by the formula [6, 7]

0, re[rmin;rmax]
= M 4
fR(r) 1/(rmax_rmin): re[rmin;rmax] ( )

Suppose that the capacitor was discharged initially: Uc(0) =0. Then the capacitor voltage at time ¢ is calcu-
lated as [10]

Uc(t)= UDCVG(1 —e_t/rc)~ &)
Further, for notational convenience, Uc (f) will be written as U.
Let's determine the probability density function of the random variable Uc: fy.(Uc) . For this purpose, using

(5), we express the resistance r through the capacitor voltage U (that is, we define the inverse function »(Uc) with re-
spect to the function U (7))

rUc) =/(C-(1-Uc/Upcyg)).- (©6)
Then, according to (1), the function f; c (Uc) takes the form
Jue W)= freWe)-[FWUe)) - )
Let us find the derivative r'(Uc).
' 2
r'Uc)= f/[CUDCVG(ln(l ~Uc/Upcye)) (1 _UC/UDCVG)] . ®)
Substituting (4) and (8) into (7), we obtain the final expression for the function f; c Ue):
0, UC & [UC min> UCmax]
oo WUe) = ©)

1/ Ui = T ))'f/[CUDCVG(ln(l ~Uc/Uperg ) (1=Uc /Upcye )l Uc €UcminsUc max)
Here UCmin = UDCVG(1 - e—t/rmaxC)’ UCmax = UDCVG(I - e_t/r’”""c),

It should be noted that the minimum capacitor voltage is reached at the maximum value of the active resistance
and vice versa.

Since by definition the probability density function f;; c (Uc) 1is a derivative of the probability distribution
function F(Uc), then to find F(Uc), we integrate (9):
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0, UC < UCmin
Uc

Fy.Uc)= foC(Uc)dUCZ 1/ rnaoe = 1min))- - W(Upcye=Uc) Upeye=UcmIC: Uc €lUcmin:Ucmar)- (10)
0 1, Uc2Ucpax

It is obvious that the distribution of the random variable U is not uniform, since a uniform distribution would
be characterized by the expression [7]

0, UC < Ucmin
FUC (UC) = (UC _Ucmin )/(Ucmax _Ucmin )’ UC < [Ucmin;UCmax]
1, UC > Ucmax

Let's calculate, as an example, the probabilistic properties of a random variable U (?) for the following circuit
parameters: Upcyg =100V, C=0.1F, r,;,=0.1 Ohm, r,, =1 Ohm. The time moment under consideration we take
t=10"s.

The values of the maximum and

Ju-WUc) ) 1F (Uc) minimum possible capacitor voltages at
0.14 - these parameters are defined as
0,12 1 —— U . =U 1 _t/rinaxc = 11
- Cmin =Y DCVG —e =95V ( )
0.1 0.8 g
0,08 \ 0.6 UCmax = UDCVG( 1- eit/rminc) =632V (12)
2‘22 \ 04 The graphs of the probability den-
’ \\ 0 sity function f; -(Uc) and the probability
0,02 2 7
o N— o I distribution function F(U¢) of the random
0 20 40 60 30 0 -0 40 50 20 capacitor yoltgge Uc(t) at time t=10" s are
Fie. 2 Ue, V Ue V presented in Fig. 2 and 3.
ig. > >

Fig. 3
Let's define the mathematical expectation M[U(] of the random variable Ug, using (2), (4), (5).

M[UC] = r”]az]C (r) IR (r)dr = rmfx (UDCVG (1 - e—t/rC )/(rmax ~ Tmin ))dr : (13)

Tmin Tmin

Integrating (13) and performing the transformations, we obtain the final expression for M[U(]:

Mluc]=u @HH{”max(l - e—t/(r,,mc))_ Tmin (1 - e_t/(rmmC))_ t[Ei[_ rm:xCJ B Ei( rm_i,,tC D / C} %r max = Tin) | (14)

x t
. . . L . . . . . . e
Here Ei(x) is a special function, which is known in mathematics as an integral exponential function Ez(x) = I —dt.
t
—0
It should be noted that the value of the mathematical expectation of the capacitor voltage M[U(] is not equal to
the capacitor voltage when the resistance of the circuit is equal to its mathematical expectation M[R]:

MU= Uc|r-u[r]- (15)
For example, for considered circuit parameters, the mathematical expectation of the capacitor voltage at time
t=10"s, according to (14), is M[Uc1=21.7V.
At the same time, the capacitor voltage that would be observed in the case if the circuit resistance » was equal
to the resistance mathematical expectation M[R] (which for uniform distribution is M[R] = (#int#max)/2 = 0.55 Ohm) at

V:M[R] =16.6V .

This difference in values is explained by the fact that the dependence of the electrical characteristics of the cir-
cuit on its resistance is not linear, and, as a consequence, the form of the probability density function (and, conse-
quently, its expectation depending on this function) for the circuit resistance differs from the corresponding functions
for the circuit electrical characteristics.

Conclusion. The probabilistic properties (probability density function, probability distribution function,
mathematical expectation) of the electrical characteristic (capacitor voltage) of electric discharge installation circuit

t=10"* s will reach the value (accordingly (5)) Uc
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with stochastic parameter (active resistance) that changes according to the known probability distribution law (in par-
ticular, uniform probability distribution) are determined in the paper.

It is shown that the analysis of processes in circuits with a stochastic parameter, based on the intuitive use of its
mathematical expectation, gives an inaccurate result at calculation of circuit electrical characteristics. Therefore it is
necessary to use the mathematical expectation of the considered circuit electrical characteristic (mathematical expecta-
tion of capacitor voltage), which generally differs from the corresponding electrical characteristic, calculated at the de-
terministic parameter value (that equals to its mathematical expectation).
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IMOBIPHICHI BJIACTUBOCTI EJIEKTPUYHUX XAPAKTEPUCTHUK 3APSTHOI'O KOJIA KOHJAEHCATOPA I3
CTOXACTHYHUM AKTHUBHHUM OIIOPOM
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3anpononosano nioxio 00 6usHaueHHs IMOBIPHICHUX éracmusocmell (QyHKyii 2ycmunu po3nooiny imosgipnocmeti, yHKyii po3nooiny
tiMogipHocmell, MamemMamuiHo20 cnooieanHs) eneKmpuiHux XapaKmepucmux Kil eiekmpopospioHux yCMaHo80K, aKmueHull onip
AKUX MODice 3MINI08amucs 8Unaokosum yurom. Ilepedbawacmoca, wo makuil CMOXACMUYHUL ONIp XApakmepusyemvcsa 6esnepepe-
HOI0 8UNAOKOBOI0 BEUYUHOI), IMOBIPHICHT 61acmugocmi AKoi 8ioomi. Ak npuxnad Oyau 0ocaiodxiceHi iMOSIpHICHT 61acmugocmi Hanpy-
2U Ha KOHOEHCamopi 6 KoJli nepuio2o nopsioKy 3i CMoXacmuyHumM aKmueHUM ONOPOM, WO MA€ PIGHOMIPHULL pO3NOOLL UMOBIPHOCHELL.
Bi6n. 10, puc. 3.

Knrouoei cnosa: nepexigHi nporecy, CTOXaCTHYIHHUHI OIIip, BUIIAIKOBUI Ipoliec, Oe3nepepBHUH PO3MOiT HMOBIPHOCTEH.
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BEPOSITHOCTHBIE CBOMCTBA SJIEKTPHYECKUX XAPAKTEPUCTHUK 3APSTHOM LIELUA
KOHAEHCATOPA CO CTOXACTUYECKHUM AKTUBHBIM COITPOTUBJIEHUEM
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Ipeonosicen no0xo0 K onpedereHuto 6epOAMHOCHHbIX C80UCME (PYHKYUU NAOMHOCMU pachpedenenus eeposmHocmel, QyHKyuu pac-
npedeeHus 6epoAMHOCMel, MAMEMAMUYECKO20 OHCUOAHUSA) INEKMPULECKUX XAPAKMEPUCTUK Yenell 2NeKMPOPA3PAOHLIX YCIMAHOBOK,
AKMUBHOE CONPOMUBIEHUE KONMOPBIX MONCEM USMEHAMbCA CyHatinblM 00paszom. IIpeononazaemcs, 4umo maxkoe Cmoxacmuieckoe co-
nPOMuUGIIeHUE XAPAKMEPUYENCsl HENPEPLIGHOU CIYHAUHOU BEIUUUHO, 6EPOSMHOCHHbIE C80UCMEA KOMOPO uzgecmuvl. B kauecmese
npumepa ObLIU UCCIE008AHL BEPOIMHOCHIHbLE COUCIBA HANPSANCEHUS HA KOHOEHCAMOpe 8 Yenu nepeoeo NOpsoOKd co CMOXACMUYECKUM
AKMUSHBIM CONPOMUBTEHUEM, UMEIOWUM PABHOMEPHOe pacnpedeneHue seposmuocmei. bubin. 10, puc. 3.

Kniouesvie cnoga: nepexoqHsle MpOLECCHl, CTOXaCTHYECKOE CONPOTHBICHUE, CIy4allHbIH IpOLECC, HEIPEPhIBHOE paclpeeieHue
BEPOSATHOCTEN.
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