RESEARCH OF ELECTROMAGNETICAL AND ELECTROMECHANICAL PROCESSES OF AN INDUCTION-SYNCHRONOUS ELECTRICAL MACHINE IN THE IDLE MODE
ARTICLE_7_PDF (Українська)

Keywords

model
electrical machine
mode
synchronism
excitation current модель
електромеханічний перетворювач
режим
синхронізм
струм збудження

How to Cite

[1]
Коцур, М. 2024. RESEARCH OF ELECTROMAGNETICAL AND ELECTROMECHANICAL PROCESSES OF AN INDUCTION-SYNCHRONOUS ELECTRICAL MACHINE IN THE IDLE MODE. Tekhnichna Elektrodynamika. 2 (Apr. 2024), 062. DOI:https://doi.org/10.15407/techned2024.02.062.

Abstract

A two-dimensional circuit-field model of non-stationary electromagnetic and mechanical processes of an induction-synchronous electromechanical converter has been developed. It allows establishing the relationship between electromagnetic processes in the circuit and 2D-field parts of the model, taking into account the features of the construction of its armature and rotor windings through their schematic implementation, and ensuring switching with elements of conventional and semiconductor power systems. Electromagnetic and mechanical processes in idle mode have been investigated using numerical modeling methods, considering the combined interaction of the coupled induction and synchronous parts in a single active part of the electromechanical converters. The presence of self-synchronization properties for induction -synchronous electromechanical converters has been demonstrated, wherein asynchronous starting is provided with subsequent synchronization of its rotor into synchronism in idle mode without excitation, and the conditions for their occurrence are explained. The relationships between the idle current and excitation current have been established, determining the operation of the synchronous part of the induction-synchronous electromechanical converter in underexcited, normally excited, and overexcited modes. It has been proven that in underexcited and normally excited modes, its synchronous part operates as a reactive power compensator, while in the overexcited mode, it operates as a generator. Experimental studies confirm the adequacy and accuracy of numerical implementation, as well as the correspondence to electromagnetic processes during the operation of the induction-synchronous electromechanical converter in idle mode. References 14, figures 11.

https://doi.org/10.15407/techned2024.02.062
ARTICLE_7_PDF (Українська)

References

Popov V.I. Electric machine combined frequency converters. Moskva: Еnerhiia, 1980. 176 p. (Rus)

Luschyk V.D. Combined electric machines. Basic theory. Kyiv: Tekhnika, 1993. 203 p. (Ukr)

Zahriadtskyi V.I. Combined electric machines. Fundamentals of the theory. Kyshynev: Kartia Moldoveni-aske, 1971. 164 p. (Rus)

Karavaev V.T. Contactless combined synchronous generator. Elektrychestvo. 1990. No 11. Pp. 17-25. (Rus)

Luschyk V.D., Ivanenko V.S. Multipole cascade synchronous machines. Elektromekhanichni i energozberigayuchi systemy. 2011. Vol 2. Pp. 121-123. (Ukr)

Lushchyk V.D., Ivanenko V.S., Borzik V.L. Synchronous cascade motor with combined windings. Elektrotekhnika i elektromekhanika. 2011. No 1. Pp. 31-32. (Ukr)

Luschyk V.D. Asynchronous motors with phase rotors with cascade properties at start-up. Elektrotekhnika i elektromekhanika. 2005. No 2. Pp. 39-41. (Ukr)

Luschyk V.D., Semenov V.V. A new type of low-speed asynchronous-synchronous motor. Ugol Ukrainy. 2008. No 9. Pp. 39-41. (Ukr)

Luschyk V.D. Prospective directions for improving electric machines: monograph. Kyiv: PrAT Mironivska drukarnia, 2015. 264 p. (Ukr)

Kotsur M., Yarymbash D., Kotsur I., Yarymbash S. Improving efficiency in determining the inductance for the active part of an electric machine's armature by methods of field modeling. Eastern-European Journal of Enterprise Technologies. 2019. Vol. 6. No 5 (102). Pр. 39-47. DOI: https://doi.org/10.15587/1729-4061.2019.185136.

Vaskovskyi Ju.M., Haydenko Ju.A. Research of electromagnetic processes in permanent magnet synchro-nous motors based on a "electric circuit - magnetic field" mathematical model. Tekhnichna Elektrodynamika. 2018. No 2. Pp. 47-54. DOI: https://doi.org/10.15407/techned2018.02.047.

Sadowski N., Lefevre Y., Lajoie-Mazenc M., Cros J. Finite element torque calculation in electrical ma-chines while considering the movement. IEEE Transactions on Magnetics. 1992. Vol. 28. No 2. Pp. 1410-1413. DOI: https://doi.org/10.1109/20.123957.

Skalka M., Ondrůšek Č., Schreier L., Michailidis P. Torque components identification of induction ma-chine by FEM. Proc. International Aegean Conference on Electrical Machines and Power Electronics and Electromo-tion. Istanbul, Turkey, 08-10 September 2011. Vol. 1. Pp. 185-189. DOI: https://doi.org/10.1109/ACEMP.2011.6490592.

Milykh V.I., Tymin M.G. A comparative analysis of the parameters of a rotating magnetic field inductor when using concentric and loop windings. Elektrotekhnika i Elektrichestvo. 2021. No 4. Pp. 12-18. DOI: https://doi.org/10.20998/2074-272X.2021.4.02.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Array

Abstract views: 134 | PDF Downloads: 80

Downloads