RESEARCH OF THE PERFORMANCE INDICATOR OF AN ELECTROMAGNETIC MILL
ARTICLE_6_PDF

Keywords

electromagnetic mill
grinding
mixing
mill performance
mill efficiency
number of blows of millstones
millstone force momentum
millstone jerk електромагнітний млин
розмелювання
перемішування
продуктивність млина
ефективність млина
кількість ударів жорен
імпульс сили жорна
ривок жорна

How to Cite

[1]
Makarchuk, O. and Calus, D. 2022. RESEARCH OF THE PERFORMANCE INDICATOR OF AN ELECTROMAGNETIC MILL. Tekhnichna Elektrodynamika. 2022, 1 (Jan. 2022), 050. DOI:https://doi.org/10.15407/techned2022.01.050.

Abstract

The paper is devoted to the development of a way for quantitative evaluation of the performance of an electromagnetic mill, i.e. a device that converts electrical energy into energy of mechanical interaction of operating elements (millstones) with the substance being ground/mixed. The proposed way is based on processing the results of calculating the trajectories of ferromagnetic millstones of an electromagnetic mill moving in a rotating magnetic field under the action of electrodynamic forces and hydrodynamic resistance forces and limited by the space of the working chamber. The average values of the number of blows, the momentum of the force of these blows, the linear velocity of the millstones and the value of the jerk are calculated. The proposed expression for calculating the integrated non-dimensional performance indicator is calculated on the basis of the above values and allows to link the performance of the grinding process with the design indicators of the mill inductor, the size of its working chamber, quantity, shape, dimensions of millstones, etc. The results of mathematical experiments to determine this performance indicator for an electromagnetic mill with a working volume of 2090 cm3 and an average value of magnetic induction in the working chamber ≈ 0.12 T are specified. This way needs an experimental confirmation. References 11, figures 5, table 1.

https://doi.org/10.15407/techned2022.01.050
ARTICLE_6_PDF

References

Logvinenko D.D., Shelyakov O.P. Intensification of technological processes in devices with a vortex layer. K.: Tekhnika, 1976. 144 p. (Rus)

Ogonowski S., Wolosiewicz-Glab, M., Ogonowski Z., Foszcz D., Pawelczyk M. Comparison of wet and dry grinding in electromagnetic mill. Minerals. 2018. No 8(4). P. 138. DOI: https://doi.org/10.3390/min8040138

Ershov D.V. Mechanochemical activation of carbon materials in an apparatus with a vortex layer. Izvestiya vyisshih uchebnyih zavedeniy. Himiya i himicheskaya tehnologiya. 2008. Vol. 51(11). Pp. 81-83. (Rus)

Całus D., Makarchuk O. Analysis of interaction of forces of working elements in electromagnetic mill. Przegland Electrotechniczny. 2019. No 12. Pp. 64-69. DOI: https://doi.org/10.15199/48.2019.12.12

Styla S. Laboratory studies of an electromagnetic mill inductor with a power source. ECONTECHMOD: An Interna-tional Quarterly Journal on Economics of Technology and Modelling Processes. 2017. Vol. 6. No 2. Pp. 109-114.

Titov D.P. Rotor operation in the vortex layer apparatus. Vestnik Belgorodskogo gosudarstvennogo tehnologicheskogo universiteta im. V.G. Shuhova. 2020. No 3. Pp. 114-120. (Rus) DOI: https://doi.org/10.34031/2071-7318-2020-5-3-114-120

Sławiński K., Knaś K., Gandor M., Balt B., Nowak W. Młyn elektromagnetyczny i jego zastosowanie do mielenia i suszenia węgli. Piece przemysłowe & kotły. 2014. No 1-2. Pp. 21-25. (Pol)

Makarchuk O., Calus D., Moroz V. Mathematical model to calculate the trajectories of electromagnetic mill operat-ing elements. Tekhnihna Electrodynamika. 2021. No 2. Pp. 26-34. DOI: https://doi.org/10.15407/techned2021.02.026

Volkov V.S., Bezzubtseva M.M., Zagaevski N.N. The issue of designing electromagnetic disk mechanoactivation in the apparatus-technological production systems, feed additives. Sovremennyie naukoemkie tehnologii. 2015. No 11. Pp. 11-13. (Rus)

Wegehaupt J., Buchczik D., Krauze O. Preliminary studies on modelling the drying process in product classification and separation path in an electromagnetic mill installation. IEEE. 22nd International Conference on Methods and Models in Automation and Robotics (MMAR). Miedzyzdroje, Poland, August 28-31, 2017. Pp. 849-854. DOI: https://doi.org/10.1109/MMAR.2017.8046939

Filts R.V. Taylor vector basis function and its application in problems of electrodynamics. Izvestiya vuzov Elek-tromehanika. 1989. No 9. Pp. 5-10. (Rus)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Array

Abstract views: 180 | PDF Downloads: 105

Downloads

Download data is not yet available.