MODELING OF THE ANISOTROPY OF THE SPECIFIC ELECTRICAL CONDUCTIVITY OF BIOLOGICAL TISSUE ARISING AT LOCAL COMPRESSION BY BIPOLAR WELDING ELECTRODES
ARTICLE_2_PDF (Українська)

Keywords

bipolar welding of biological tissues
electrical conductivity
compression of biological tissue
modeling
COMSOL multyphysics
anisotropy біполярне зварювання біологічних тканин
питома електропровідність
стискання біологічної тканини
моделювання
COMSOL multyphysics
анізотропія

How to Cite

[1]
Ланкін, Ю. , Соловйов, В. and Романова, І. 2021. MODELING OF THE ANISOTROPY OF THE SPECIFIC ELECTRICAL CONDUCTIVITY OF BIOLOGICAL TISSUE ARISING AT LOCAL COMPRESSION BY BIPOLAR WELDING ELECTRODES. Tekhnichna Elektrodynamika. 2 (Feb. 2021), 013. DOI:https://doi.org/10.15407/techned2021.02.013.

Abstract

Current publications on bipolar welding use the electrical characteristics of uncompressed biological tissue. This reduces the accuracy of calculating the distribution of the density of the flowing currents and the strength of the electric fields in the zone of the fabric to be welded when it is squeezed. The aim of the work is to show a methodology for calculating the change in the specific electrical conductivity of biological tissue under local compression by electrodes and the effect of this factor on the results of modeling electrical processes of biological welding. A geometric interpretation of the change in the electrical conductivity of the pig's heart muscle when squeezed by bipolar welding electrodes in relative units is proposed. The principle of similarity of the geometric parameters of the physical experiment and the graphic model of COMSOL multyphysics is used, as a result of which the dependences of the three main geometric parameters of the model on the magnitude of the relative compression are determined. The method of successive approximations of the values of the total electrical resistance of biological tissue in a physical experiment at frequencies of 0,3, 30, and 300 kHz and the calculated resistances on the model with a change in the basic geometric parameters of specific electrical conductivity was used. A model of bipolar welding of biological tissues is obtained, which takes into account the anisotropy factor of the electrical conductivity of biological tissue under compression. Some results of investigations of the regularities of the current flow in the tissue, taking into account the arising anisotropy, are presented. References 12, figures 5, tables 4.

https://doi.org/10.15407/techned2021.02.013
ARTICLE_2_PDF (Українська)

References

Lebedev A.V., Dubko A.G., Lopatkina K.G. Features of the application of the theory of resistance welding of metals to welding of living tissues. Tekhnichna elektrodinamіka. Tematychnyi vypusk Sylova elektronika ta energoefektyvnist. Part 2. 2012. Pp. 187-192. (Rus).

Kobelev A.V., Smolyuk L.T., Kobeleva R.M., Procenko Y.L. (2012) Nonlinear viscoelastic properties of biological tissues. Ekaterinburg, UrO RAN, 2012. 244 p. (Rus).

Olejnik V.P., Kulish S.N. Hardware research methods in biology and medicine. Kharkov: Kharkivskii aviatsiinyii instytut, 2004. 110 p. (Rus).

Hlusov I.A., Pichugin V.F., Ryabceva M.A. Fundamentals of biomechanics of biocompatible materials and biological tissues. Tomsk: Izdatelstvo Tomskogo politekhnicheskogo universiteta, 2007. 149 p. (Rus).

Lamberton G.R., His R.S., Jin D.H., Lindler T.U., Jellison F.C., Balder D.D. Prospective comparison of four laparocopic vessel ligation devices. Journal of Endourology. 2008 Vol. 22. No 10. Pp. 2307-2312. DOI: https://doi.org/10.1089/end.2008.9715

Szyrach M., Paschenda P., Afify M., Schäller D., Tolba R. Evaluation of the novel bipolar vessel sealing and cutting device BiCision® in a porcine model. Minimaly Invasive Therapy & allied technologies. 2012. No 21(6). Pp. 402 - 407. DOI: https://doi.org/10.3109/13645706.2012.661373

Lankin Y.N., Sushij L.F., Bajshtruk E.N. System for measuring the temperature of biological tissues in bipolar high-frequency welding. Avtomaticheskaya svarka. 2014. No 11. Pp. 35-38. (Rus).

Smolyaninov V.V. Mathematical models of biological tissues. Moskva: Nauka, 1980. 368 p. (Rus).

Shved O.E. Substantiation of a new surgical method of hemostasis (experimental-clinical study): diss. kand. med. nauk 14.01.03. Natsionalna medychna academiia pisliadyplomnoi osvity imeni P.L. Shchupika. Kyiv. 2008. 172 p. (Ukr).

Muzichenko P.F., Chernyak V.A., Lankіn Y.M. Factors that affect the quality of electric welding of living tissues. 14rd Sci.-Pract. Conf. Zvariuvannia ta termіchna obrobka zhyvyh tkanyn. Teorіa. Praktyka. Perspektyvy. Kyiv, Ukraine, 29 November 2019. URL: http://patonmed.com.ua/wp-content/uploads/2019/11/Tezy_dopovidi_2019.pdf (Ukr)

Zuev A.L. Mishlanov V.YU., Sudakov A.I., SHakirov N.V., Frolov A.V. (2012) Equivalent electrical models of biological objects. Rossijskij zhurnal biomekhaniki. 2012. Vol. 16. No 1(55). Pp. 110–120. (Rus).

Guhman A.A. (1973) Introduction to Similarity Theory. Moskva: Vysshaya shkola, 1973. 296 p. (Rus).

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2021 Array

Abstract views: 134 | PDF Downloads: 68

Downloads

Download data is not yet available.