Abstract
Development of electrical models of plasma-erosive loads is analyzed and the estimation of their adequacy is given. On the basis of nonlinear model of resistance of plasma-erosive load adequate in wide ranges of change of voltage and duration of discharge pulses, in program Matlab Simulink environment the model of output circuit of the generator of pulses with such load is created and its features are described. The estimation of adequacy of the offered model is given at comparison of results of calculation of time dependences of voltage and current of discharge pulses, and also resistance of load with the data received as a result of direct experiments. Dependence of relative errors of voltage and current of the discharge pulses calculated with the account and without jet elements of an equivalent circuit of load from amplitude of their voltage is given. References 22, figures 5, table 1.
References
Bezkrovnyi Yu.A., Levchenko V.F., Levchenko Yu.V. Electric pulse purification of industrial sewage // Voda I Vodoochysni Tekhnolohii. – 2004. – No 3. – Pp. 71–74. (Rus)
Bronshtein I.N., Semendyaev K.A. Reference book on mathematics. – Moskva: Nauka, 1981. – 720 p. (Rus)
Zakharchenko S.N. The Influence of external electric field strength and temperature on the resistance of sparkerosive hydrosols of metals // Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. – 2012. – Issue № 33. – Pp. 113–120. (Rus)
Zakharchenko S.N. Modeling of dependence of electrical resistance of granulated conductive mediums from a pulse current proceeding in them // Tekhnichna Elektrodynamika. – 2012. – No 5. – Pp. 17–27. (Rus)
Zakharchenko S.N. Physical model of the granulated conductive medium // Tekhnichna Elektrodynamika. – 2012. – No 6. – Pp. 19–26. (Rus)
Zakharchenko S.N., Shidlovskaia N.А. Modeling of resistance of granulated conductive mediums by parametrical dependences // Elektronnoe Modelirovanie. – 2012. – 34, No 5.– Pp. 91–102. (Rus)
Kamke E. Reference Book on Ordinary Differential Equations. – Мoskva: Nauka, 1965. – 704 p. (Rus)
Lopatko K.G., Melnichuk M.D. Physics, synthesis and biological functionality of nanosize objects. – Kyiv: Vydavnychyi tsentr Natsionalnoho Universytetu Bioresursiv i Pryrodokorystuvannia Ukrainy, 2013. – 297 p. (Ukr)
Podoltsev A.D., Suprunovskaya N.I. Modeling and the analysis of electric discharge processes in nonlinear RLCcircuits // Tekhnichna Elektrodynamika. Tematychnyi vypusk “Problemy suchasnoi elektrotekhniky”. – 2006. – Vol. 4. – Pp. 3–8. (Rus)
Shydlovskaya N.A., Zakharchenko S.N., Cherkassky A.P. Nonlianer-parametrical model of electrical resistance of conductive granulated media for a wide range of applied voltage // Tekhnichna Elektrodynamika. – 2014. – No 6. – Pp. 3–17. (Rus)
Shidlovskii A.K., Shcherba A.A., Suprunovskaia N.I. Power processes in electrical pulse devices with capacitive energy storages. – Kyiv: Interkontinental-Ukraina, 2009. – 208 p. (Rus)
Shcherba A.A., Podoltsev A.D., Zakharchenko S.N. Regulation of dynamic parameters of technological systems of volume electric-spark treatment heterogeneous current-carrying mediums // Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy. "Elektrotekhnika". – 2001. – Pp. 3–16. (Rus)
Shcherba A.A., Podoltsev A.D., Kucheryavaya I.N. Research of the electro-erosive phenomena at a flow of a pulsing current between conductive granules taking into account a plasma contact gap // Tekhnichna Elektrodynamika. – 2002. – No 4. – Pp. 3–7. (Rus)
Shcherba A.A., Suprunovska N.I., Ivashchenko D.S. Modeling of nonlianer resistance of electro-spark load for synthesis of discharge circuit of capacitor by time parameters // Tekhnichna Elektrodynamika. – 2014. – No 3. – Pp. 12–18. (Rus)
Carrey J., Radousky H.B., Berkowitz A.E. Spark-eroded particles: influence of processing parameters // J. Appl. Phys. – 2004. – Vol. 95. – No 3. – Pp. 823–829.
Danilenko N.B., Savel`ev G.G., Yavorovskii N.A., Yurmazova T.A. Chemical reactions in electric pulse dispersion of iron in aqueous solutions // Russian Journal of Applied Chemistry. – 2008. – Vol. 81. – No 5. – Pp. 803–809.
Hong J.I., Solomon V.C., Smith D.J., Parker F.T., Summers E.M., Berkowitz A.E. One-Step Production of Optimized Fe-Ga Particles by Spark Erosion // Appl. Phys. Lett. – 2006. – Vol. 89. – Pp. 142506-1 – 142506-3.
Nguyen P.K, Jin S., Berkowitz A.E. Mn-Bi particles with high energy density made by spark erosion // J. Appl. Phys. – 2014. – Vol. 115. – Pp. 17A756-1 – 17A756-3.
Nguyen P.K., Lee K.H., Kim S.I., Ahn K.A., Chen L.H., Lee S.M., Chen R.K., Jin S., Berkowitz A.E. Spark erosion: a high production rate method for producing Bi0.5Sb1.5Te3 nanoparticles with enhanced thermoelectric performance // Nanotechnology. – 2012. – Vol. 23. – P. 415604-1 – 415604-7.
Perekos A.E., Chernenko V.A., Bunyaev S.A., Zalutskiy V.P., Ruzhitskaya T.V., Boitsov O.F., Kakazei G.N. Structure and magnetic properties of highly dispersed Ni-Mn-Ga powders prepared by spark-erosion // J. Appl. Phys. – 2012. – Vol. 112. – Pp. 093909-1 – 093909-7.
Shcherba A.A., Podoltsev A.D., Kucheryavaya I.N. Spark erosion of conducting granules in a liquid: analysis of electromagnetic, thermal and hydrodynamic processes // Tekhnichna Elektrodynamika. – 2004. – No 6. – Pp. 4–16.
Shydlovska N., Zakharchenko S., Cherkaskyi O. The influence of electric field parameters and temperature of hydrosols of metals’ plasma-erosive particles on their resistance and permittivity // Computational problems of electrical engineering. – 2014. – Vol. 4. – No 2. – Pp. 77–84.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 Array