МІНІМІЗАЦІЯ ВПЛИВУ НАСИЧЕННЯ МАГНІТОПРОВОДІВ ТРАНСФОРМАТОРІВ СТРУМУ НА ТОЧНІСТЬ ВИСОКОВОЛЬТНИХ ТРИФАЗНИХ ПЕРВИННИХ ВИМІРЮВАЛЬНИХ КАНАЛІВ З ЦИФРОВИМ ВИХОДОМ
ARTICLE_7_PDF

Ключові слова

measurement channel
digital output
current transformer
saturation
signa
digital processing
method
accuracy вимірювальний канал
цифровий вихід
трансформатор струму
насичення
сигнал
цифрова обробка
метод
точність

Як цитувати

[1]
Паньків, В., Танкевич, Є. і Танкевич, С. 2021. МІНІМІЗАЦІЯ ВПЛИВУ НАСИЧЕННЯ МАГНІТОПРОВОДІВ ТРАНСФОРМАТОРІВ СТРУМУ НА ТОЧНІСТЬ ВИСОКОВОЛЬТНИХ ТРИФАЗНИХ ПЕРВИННИХ ВИМІРЮВАЛЬНИХ КАНАЛІВ З ЦИФРОВИМ ВИХОДОМ. ТЕХНІЧНА ЕЛЕКТРОДИНАМІКА. 6 (Лис 2021), 058. DOI:https://doi.org/10.15407/techned2021.06.058.

Анотація

Виконано класифікацію та визначено характеристики, можливості та недоліки відомих методів програмної корекції вихідного струму однофазного первинного вимірювального каналу (ПВК) струму. Запропоновано дискретизовану модель струму короткого замикання (КЗ). Розроблено метод та алгоритм підвищення точності трифазного ПВК струму в перехідних режимах електроенергетичних систем (ЕЕС) за насичення магнітопроводів його фазних ТС. Достовірність розробленого методу підтверджено шляхом імітаційного моделювання вихідного струму ПВК за міжфазного КЗ фаз А та В без корекції та з корекцією його фазних струмів. Показано, що розроблений метод дає змогу зменшити повну похибку ПВК в перехідних режимах ЕЕС за насичення магнітопроводів ТС з 70-90% до 6-15%. Бібл. 47, рис. 6, табл. 1.

https://doi.org/10.15407/techned2021.06.058
ARTICLE_7_PDF

Посилання

Tankevych E.M. Primary measuring channels of complex automation systems of electric power objects: Dr. tech. sci. diss.: 05.14.02. Institute of Electrodynamics NAS of Ukraine. Kyiv. 2004. 445 p. (Ukr)

Blinov I.V., Zaitsev I.O., Kuchanskyy V.V. Problems, methods and means of monitoring power losses in overhead transmission lines. Part of the Studies in Systems, Decision and Control book series. Springer, 2020. Vol. 298. Pp. 123-136. DOI: https://doi.org/10.1007/978-3-030-48583-2_8

Ivanov H., Blinov I., Parus Y. Simulation Model of New Electricity Market in Ukraine. IEEE 6th International Conference on Energy Smart Systems. Kyiv, Ukraine, April 17-19, 2019. Pp. 339-342. DOI: https://doi.org/10.1109/ESS.2019.8764184

Blinov I., Tankevich S. The harmonized role model of electricity market in Ukraine. 2nd International Conference on Intelligent Energy and Power Systems (IEPS 2016). Kyiv, Ukraine, June 7-11, 2016. DOI: https://doi.org/10.1109/IEPS.2016.7521861

Problems of transient regimes. Novosti electrotekhniki. 2015. No 4 (94). P. 8. (Rus.)

Souders T. M. Wide-band two stage current transformers of high accuracy. IEEE Transactions on instrumentation and measurement. 1972. Vol. IM-21. No 4. Pp. 340-345. DOI: https://doi.org/10.1109/TIM.1972.4314039

Petersons O. A self-balancing current comparator. IEEE Transactions on instrument and measurement. 1966. Vol. 15. No 1-2. Pp. 62-71. DOI: https://doi.org/10.1109/TIM.1966.4313504

Baccigalupi A., Liccardo A. Low-cost prototype for the electronically compensation of current transformers. IEEE Sensor journal. 2009. Vol. 9. No 6. Pp. 641-647. DOI: https://doi.org/10.1109/JSEN.2009.2020242

Bradley D.A., Gray C.B., O'Kelly D. Transient compensation of current transformers. IEEE Transactions on power apparatus and systems. 1978. Vol. PAS-97. No 4. Pp. 1264-1271. DOI: https://doi.org/10.1109/TPAS.1978.354609

Davarpanah M., Sanaye-Pasand M., Iravani R. A saturation suppression approach for the current transformer. Part I: Fundamental concepts and design. IEEE Transaction on power delivery. 2013. Vol. 28. No 3. Pp. 1928-1935. DOI: https://doi.org/10.1109/TPWRD.2013.2253496

Slomovitz D. Electronic system for increasing the accuracy of in-service instrument-current transformers. IEEE Transactions on instrument and measurement. 2003. Vol. 52. No 2. Pp. 408-410. DOI: https://doi.org/10.1109/TIM.2003.810718

Kang Y.C., Kang S.H., Park J.K., Johns A.T., Aggarwal R.K. Development and hardware implementation of a compensating algorithm for secondary current of current transformers. IEE Proceedings on electric power applications. 1996. Vol. 143. No 1. Pp. 41-49. DOI: https://doi.org/10.1049/ip-epa:19960040

Kang Y.C., Park J.K., Kang S.H., Johns A.T., Aggarwal R.K. An algorithm for compensating secondary currents of current transformers. IEEE Transaction on power delivery. 1997. Vol. 12. No 1. Pp. 116-124. DOI: https://doi.org/10.1109/61.568231

Kang Y.C., Lim U.J., Kang S.H., Kim Y.G. Compensating algorithm for use with measurement type current transformer for protection. IEE Proceedings on generation, transmission and distribution. 2005. Vol. 152. No 6. Pp. 880-890. DOI: https://doi.org/10.1049/ip-gtd:20045115

Kang Y.C., Lim U.J., Kang S.H., Crossley P.A. Compensating of the distortion in the secondary current caused by saturation and remanence in a CT. IEEE Transaction on power delivery. 2004. Vol. 19. No 4. Pp. 1642-1649. DOI: https://doi.org/10.1109/TPWRD.2004.835266

Lu Z., Smith J.S., Wu Q.H. Morphological lifting scheme for current transformer saturation detection and compensation. IEEE Transaction on circuits systems. 2008. Vol. 55. No 10. Pp. 3349-3357. DOI:https://doi.org/10.1109/TCSI.2008.924112

Ozgonenenl O. Correction of saturated current from measurement current transformer. IET Electrical power application. 2013. Vol. 7. No 7. Pp. 580-585. DOI:https://doi.org/10.1049/iet-epa.2013.0105

Bittanti S., Cuzzola F.A., Lorito F., Poncia G. Compensation of nonlinearities in a current transformer for the reconstruction of the primary current. IEEE Transaction on control systems technology. 2001. Vol. 9. No 4. Pp. 565-573. DOI:https://doi.org/10.1109/87.930967

Kang Y.C., Yun J.S., Lee D.E., Kang S.H., Jang S.I., Kim Y.G. Busbar differential protection in conjunction with a current transformer compensating algorithm. IEEE Transaction on power delivery. 2008. Vol. 2. No 1. Pp. 100-109. DOI: https://doi.org/10.1049/iet-gtd:20060520

Ajaei F.B., Sanaye-Pasand M., Davarpanah M., Rezaei-Zare A., Iravani R. Compensation of the current transformer saturation effects for digital relays. IEEE Transaction on power delivery. 2011. Vol. 26. No 4. Pp. 2531-2540. DOI: https://doi.org/10.1109/TPWRD.2011.2161622

Chothani N.G., Bhalja B.R. New algorithm for current transformer saturation detection and compensation based on derivatives of secondary current and Newton's backward difference formulae. IET Generation, transmission and distribution. 2014. Vol. 8. No 5. Pp. 841-850. DOI: https://doi.org/10.1049/iet-gtd.2013.0324

El-Naggar K., Gilany M. A discrete dynamic filter for detecting and compensating CT saturation. Electric power systems research. 2007. Vol. 77. No 5-6. Pp. 527-533. DOI: https://doi.org/10.1016/j.epsr.2006.05.008

Hong Y.Y., Chang-Chian P.C. Detection and correction of distorted current transformer current using wavelet transform and artificial intelligence. IET generation, transmission and distribution. 2008. Vol. 2. No 4. Pp. 866-875. DOI: https://doi.org/10.1049/iet-gtd:20070383

Hong Y.Y., Wei D.-W. Compensation of distorted secondary current caused by saturation and remanence in a current transformer. IEEE Transactions on power delivery. 2010. Vol. 25. No 1. Pp. 47-54. DOI: https://doi.org/10.1109/TPWRD.2009.2034820

Ji T.Y., Wu Q.H., Tang W.H., Jiang L. A morphological scheme for the correction of CT saturation waveforms. IEEE Power and energy society general meeting. Detroit, USA, July 24-29, 2011. Pp. 1-7. DOI: https://doi.org/10.1109/PES.2011.6039328

Kgorashadi-Zadeh H., Sanaye-Pasand M. Correction of saturated current transformers secondary current using ANNs. IEEE Transactions on power delivery. 2006. Vol. 21. No 1. Pp. 73-79. DOI: https://doi.org/10.1109/TPWRD.2005.858799

Li F., Li Y., Aggarwal R.K. Combined wavelet transform and regression technique for secondary current compensation of current transformers. IEE Processing on generation, transmission and distribution. 2002. Vol. 149. No 4. Pp. 497-503. DOI: https://doi.org/10.1049/ip-gtd:20020296

Pan J., Vu K., Hu Y. An efficient compensation algorithm for current transformer saturation effects. IEEE Transaction on power delivery. 2004. Vol. 19. No 4. Pp. 1623-1628. DOI: https://doi.org/10.1109/TPWRD.2004.835273

Sachdev M.S., Barlbeau M.A. A new algorithm for digital impedance relays. IEEE Transaction on power apparatus and systems. 1979. Vol. PAS-98. No 6. Pp. 2232-2240. DOI: https://doi.org/10.1109/TPAS.1979.319422

Stachel P., Schegner P. Detection and correction of current transformer saturation effects in secondary current signals. IEEE Power & Energy society general meeting PES'09. Calgary, AB, 26-30 July, 2009. Pp. 1-6. DOI: https://doi.org/10.1109/PES.2009.5275211

Wiszniewski A., Rebizant W., Schiel L. Correction of current transformer transient performance. IEEE Transaction on power delivery. 2008. Vol. 23. No 2. Pp. 624-632. DOI: https://doi.org/10.1109/TPWRD.2008.915832

Yu C.-S. Detection and correction of saturated current transformer measurements using decaying DC components. IEEE Transactions on power delivery. 2010. Vol. 25. No 3. Pp. 1340-1347. DOI: https://doi.org/10.1109/TPWRD.2010.2045137

Yu D.C., Cummins J.C., Wang Z., Yoon H.J. Correction of current transformer distorted secondary current due to saturation using artificial neural networks. IEEE Transaction on power delivery. 2001. Vol. 16. No 2. Pp. 189-194. DOI: https://doi.org/10.1109/61.915481

Ohrstom M. Fast fault detection for power distribution systems : PhD thesis : 29.04.2003. Royal Institute of Technology. Stockholm, Sweden. 2003. 104 p.

Phadke A.G., Thorp J.S. Computer relaying for power systems. N.-Y.: Willey, 2009. 326 p. DOI: https://doi.org/10.1002/9780470749722

Melo Y.M.P., Lopes F.V., Neves W.L.A., Fernandes Jr.D. A comparison of transmission line fault detection methods. International conference on power systems transients. Cavtat, Croatia, June 15-18, 2015. Pp. 1-5.

Silva K.M., Souza B.A., Brito N.S.D. Fault detection and classification in transmission lanes based on wavelet transform and ANN. IEEE Transaction on power delivery. 2006. Vol. 21. No 4. Pp. 2058-2063. DOI: https://doi.org/10.1109/TPWRD.2006.876659

Lin X., Zou L., Tian Q., Weng H., Liu P. A series multiresolutiom morphological gradient-based criterion to identify CT saturation. IEEE Transaction on power delivery. 2006. Vol. 21. No 3. Pp. 1169-1175. DOI: https://doi.org/10.1109/TPWRD.2005.861338

Lopes F.V., Fernandes Jr.D., Neves W.L.A. Transients detection in EHV transmission lines using Park's transformation. IEEE/PES Transmission & Distribution Conference and Exposition. Orlando, USA, May 7-9, 2012. Pp. 1-6. DOI: https://doi.org/10.1109/TDC.2012.6281528

Noori M. R., Shahrtash S.M. Combinde fault detector and fault phase selector for transmission lines based on adaptive cumulative sum method. IEEE Transaction on power delivery. 2013. Vol. 28. No 3. Pp. 1779-1787. DOI: https://doi.org/10.1109/TPWRD.2013.2261563

Aglar E.U., Tekdemir I.G., Arsoy A.B. Assessment of integral based fault detection methods for power system relaying. 9th International Conference on Electrical and Electronics Engineering. Bursa, Turkey, November 26-28, 2015. Pp. 469-473. DOI:https://doi.org/10.1109/ELECO.2015.7394440

Gilbert D.M., Morrison I.F. A statistical method for the detection of power system faults. Electrical Power and Energy Systems. 1997. Vol. 19. No 4. Pp. 269-275. DOI: https://doi.org/10.1016/S0142-0615(96)00049-X

Noori M.R., Jamali S., Shahrtash S.M. Security assessment for a cumulative sum-based fault detector in transmission lines. 10th International Conference on Environment and Electrical Engineering. Rome, Italy, May 8-11, 2011. Pp. 412-417. DOI: https://doi.org/10.1109/EEEIC.2011.5874792

Raeisi A., Hosseini-Biyouki M.M., Askarian-Abyaneh H., Danyar S. Implementation of a high-speed cumulative determinant-based fault detection algorithm for power system relaying. The 9th Power system protection and control conference. Tehran, Iran, January 14-15, 2015. Pp. 64-77. DOI: https://doi.org/10.1109/PSPC.2015.7094931

Pankiv V., Tankevych Ye. Online saturation detection of high-voltage current transformers of electric substation three-phase primary measuting channels in power systems transients. Tekhnichna Elektrodynamika. 2019. No 2. Pp. 63−71. (Ukr) DOI: https://doi.org/10.15407/techned2019.02.063

IEC 61869-6: 2016 Instrument transformers – Part 6: Additional general requirements for low-power instrument transformers. Geneva, IEC, 2016. 176 p.

IEC 61869-9: 2016 Instrument transformers – Part 9: Digital interface for instrument transformers. Geneva, IEC, 2016. 127 p.

Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Авторське право (c) 2021 Array

Переглядів анотації: 35 | Завантажень PDF: 11

Завантаження

Дані завантаження ще не доступні.