Abstract
The classification is carried out and the characteristics, capabilities and disadvantages of the known methods of programmed correction of the output current of a single-phase primary measuring channel (PMC) of the current are determined. A discretized model of short-circuit current (SCC) is proposed. A method and an algorithm for increasing the accuracy of a three-phase current PMC in transient modes of electric power systems (EPS) under the condition of saturation of the magnetic circuits of its phase current transformers have been developed. The reliability of the developed method is confirmed by simulation of the PMC output current under the condition of phase-to-phase short-circuit of phases A and B without correction and with correction of its phase currents. It is shown that the developed method makes it possible to reduce the total error of the PMC in the transient modes of the EES under the condition of saturation of the magnetic circuits of the CT from 70-90% to 6-15%. References 47, figures 6, table 1.
References
Tankevych E.M. Primary measuring channels of complex automation systems of electric power objects: Dr. tech. sci. diss.: 05.14.02. Institute of Electrodynamics NAS of Ukraine. Kyiv. 2004. 445 p. (Ukr)
Blinov I.V., Zaitsev I.O., Kuchanskyy V.V. Problems, methods and means of monitoring power losses in overhead transmission lines. Part of the Studies in Systems, Decision and Control book series. Springer, 2020. Vol. 298. Pp. 123-136. DOI: https://doi.org/10.1007/978-3-030-48583-2_8
Ivanov H., Blinov I., Parus Y. Simulation Model of New Electricity Market in Ukraine. IEEE 6th International Conference on Energy Smart Systems. Kyiv, Ukraine, April 17-19, 2019. Pp. 339-342. DOI: https://doi.org/10.1109/ESS.2019.8764184
Blinov I., Tankevich S. The harmonized role model of electricity market in Ukraine. 2nd International Conference on Intelligent Energy and Power Systems (IEPS 2016). Kyiv, Ukraine, June 7-11, 2016. DOI: https://doi.org/10.1109/IEPS.2016.7521861
Problems of transient regimes. Novosti electrotekhniki. 2015. No 4 (94). P. 8. (Rus.)
Souders T. M. Wide-band two stage current transformers of high accuracy. IEEE Transactions on instrumentation and measurement. 1972. Vol. IM-21. No 4. Pp. 340-345. DOI: https://doi.org/10.1109/TIM.1972.4314039
Petersons O. A self-balancing current comparator. IEEE Transactions on instrument and measurement. 1966. Vol. 15. No 1-2. Pp. 62-71. DOI: https://doi.org/10.1109/TIM.1966.4313504
Baccigalupi A., Liccardo A. Low-cost prototype for the electronically compensation of current transformers. IEEE Sensor journal. 2009. Vol. 9. No 6. Pp. 641-647. DOI: https://doi.org/10.1109/JSEN.2009.2020242
Bradley D.A., Gray C.B., O'Kelly D. Transient compensation of current transformers. IEEE Transactions on power apparatus and systems. 1978. Vol. PAS-97. No 4. Pp. 1264-1271. DOI: https://doi.org/10.1109/TPAS.1978.354609
Davarpanah M., Sanaye-Pasand M., Iravani R. A saturation suppression approach for the current transformer. Part I: Fundamental concepts and design. IEEE Transaction on power delivery. 2013. Vol. 28. No 3. Pp. 1928-1935. DOI: https://doi.org/10.1109/TPWRD.2013.2253496
Slomovitz D. Electronic system for increasing the accuracy of in-service instrument-current transformers. IEEE Transactions on instrument and measurement. 2003. Vol. 52. No 2. Pp. 408-410. DOI: https://doi.org/10.1109/TIM.2003.810718
Kang Y.C., Kang S.H., Park J.K., Johns A.T., Aggarwal R.K. Development and hardware implementation of a compensating algorithm for secondary current of current transformers. IEE Proceedings on electric power applications. 1996. Vol. 143. No 1. Pp. 41-49. DOI: https://doi.org/10.1049/ip-epa:19960040
Kang Y.C., Park J.K., Kang S.H., Johns A.T., Aggarwal R.K. An algorithm for compensating secondary currents of current transformers. IEEE Transaction on power delivery. 1997. Vol. 12. No 1. Pp. 116-124. DOI: https://doi.org/10.1109/61.568231
Kang Y.C., Lim U.J., Kang S.H., Kim Y.G. Compensating algorithm for use with measurement type current transformer for protection. IEE Proceedings on generation, transmission and distribution. 2005. Vol. 152. No 6. Pp. 880-890. DOI: https://doi.org/10.1049/ip-gtd:20045115
Kang Y.C., Lim U.J., Kang S.H., Crossley P.A. Compensating of the distortion in the secondary current caused by saturation and remanence in a CT. IEEE Transaction on power delivery. 2004. Vol. 19. No 4. Pp. 1642-1649. DOI: https://doi.org/10.1109/TPWRD.2004.835266
Lu Z., Smith J.S., Wu Q.H. Morphological lifting scheme for current transformer saturation detection and compensation. IEEE Transaction on circuits systems. 2008. Vol. 55. No 10. Pp. 3349-3357. DOI:https://doi.org/10.1109/TCSI.2008.924112
Ozgonenenl O. Correction of saturated current from measurement current transformer. IET Electrical power application. 2013. Vol. 7. No 7. Pp. 580-585. DOI:https://doi.org/10.1049/iet-epa.2013.0105
Bittanti S., Cuzzola F.A., Lorito F., Poncia G. Compensation of nonlinearities in a current transformer for the reconstruction of the primary current. IEEE Transaction on control systems technology. 2001. Vol. 9. No 4. Pp. 565-573. DOI:https://doi.org/10.1109/87.930967
Kang Y.C., Yun J.S., Lee D.E., Kang S.H., Jang S.I., Kim Y.G. Busbar differential protection in conjunction with a current transformer compensating algorithm. IEEE Transaction on power delivery. 2008. Vol. 2. No 1. Pp. 100-109. DOI: https://doi.org/10.1049/iet-gtd:20060520
Ajaei F.B., Sanaye-Pasand M., Davarpanah M., Rezaei-Zare A., Iravani R. Compensation of the current transformer saturation effects for digital relays. IEEE Transaction on power delivery. 2011. Vol. 26. No 4. Pp. 2531-2540. DOI: https://doi.org/10.1109/TPWRD.2011.2161622
Chothani N.G., Bhalja B.R. New algorithm for current transformer saturation detection and compensation based on derivatives of secondary current and Newton's backward difference formulae. IET Generation, transmission and distribution. 2014. Vol. 8. No 5. Pp. 841-850. DOI: https://doi.org/10.1049/iet-gtd.2013.0324
El-Naggar K., Gilany M. A discrete dynamic filter for detecting and compensating CT saturation. Electric power systems research. 2007. Vol. 77. No 5-6. Pp. 527-533. DOI: https://doi.org/10.1016/j.epsr.2006.05.008
Hong Y.Y., Chang-Chian P.C. Detection and correction of distorted current transformer current using wavelet transform and artificial intelligence. IET generation, transmission and distribution. 2008. Vol. 2. No 4. Pp. 866-875. DOI: https://doi.org/10.1049/iet-gtd:20070383
Hong Y.Y., Wei D.-W. Compensation of distorted secondary current caused by saturation and remanence in a current transformer. IEEE Transactions on power delivery. 2010. Vol. 25. No 1. Pp. 47-54. DOI: https://doi.org/10.1109/TPWRD.2009.2034820
Ji T.Y., Wu Q.H., Tang W.H., Jiang L. A morphological scheme for the correction of CT saturation waveforms. IEEE Power and energy society general meeting. Detroit, USA, July 24-29, 2011. Pp. 1-7. DOI: https://doi.org/10.1109/PES.2011.6039328
Kgorashadi-Zadeh H., Sanaye-Pasand M. Correction of saturated current transformers secondary current using ANNs. IEEE Transactions on power delivery. 2006. Vol. 21. No 1. Pp. 73-79. DOI: https://doi.org/10.1109/TPWRD.2005.858799
Li F., Li Y., Aggarwal R.K. Combined wavelet transform and regression technique for secondary current compensation of current transformers. IEE Processing on generation, transmission and distribution. 2002. Vol. 149. No 4. Pp. 497-503. DOI: https://doi.org/10.1049/ip-gtd:20020296
Pan J., Vu K., Hu Y. An efficient compensation algorithm for current transformer saturation effects. IEEE Transaction on power delivery. 2004. Vol. 19. No 4. Pp. 1623-1628. DOI: https://doi.org/10.1109/TPWRD.2004.835273
Sachdev M.S., Barlbeau M.A. A new algorithm for digital impedance relays. IEEE Transaction on power apparatus and systems. 1979. Vol. PAS-98. No 6. Pp. 2232-2240. DOI: https://doi.org/10.1109/TPAS.1979.319422
Stachel P., Schegner P. Detection and correction of current transformer saturation effects in secondary current signals. IEEE Power & Energy society general meeting PES'09. Calgary, AB, 26-30 July, 2009. Pp. 1-6. DOI: https://doi.org/10.1109/PES.2009.5275211
Wiszniewski A., Rebizant W., Schiel L. Correction of current transformer transient performance. IEEE Transaction on power delivery. 2008. Vol. 23. No 2. Pp. 624-632. DOI: https://doi.org/10.1109/TPWRD.2008.915832
Yu C.-S. Detection and correction of saturated current transformer measurements using decaying DC components. IEEE Transactions on power delivery. 2010. Vol. 25. No 3. Pp. 1340-1347. DOI: https://doi.org/10.1109/TPWRD.2010.2045137
Yu D.C., Cummins J.C., Wang Z., Yoon H.J. Correction of current transformer distorted secondary current due to saturation using artificial neural networks. IEEE Transaction on power delivery. 2001. Vol. 16. No 2. Pp. 189-194. DOI: https://doi.org/10.1109/61.915481
Ohrstom M. Fast fault detection for power distribution systems : PhD thesis : 29.04.2003. Royal Institute of Technology. Stockholm, Sweden. 2003. 104 p.
Phadke A.G., Thorp J.S. Computer relaying for power systems. N.-Y.: Willey, 2009. 326 p. DOI: https://doi.org/10.1002/9780470749722
Melo Y.M.P., Lopes F.V., Neves W.L.A., Fernandes Jr.D. A comparison of transmission line fault detection methods. International conference on power systems transients. Cavtat, Croatia, June 15-18, 2015. Pp. 1-5.
Silva K.M., Souza B.A., Brito N.S.D. Fault detection and classification in transmission lanes based on wavelet transform and ANN. IEEE Transaction on power delivery. 2006. Vol. 21. No 4. Pp. 2058-2063. DOI: https://doi.org/10.1109/TPWRD.2006.876659
Lin X., Zou L., Tian Q., Weng H., Liu P. A series multiresolutiom morphological gradient-based criterion to identify CT saturation. IEEE Transaction on power delivery. 2006. Vol. 21. No 3. Pp. 1169-1175. DOI: https://doi.org/10.1109/TPWRD.2005.861338
Lopes F.V., Fernandes Jr.D., Neves W.L.A. Transients detection in EHV transmission lines using Park's transformation. IEEE/PES Transmission & Distribution Conference and Exposition. Orlando, USA, May 7-9, 2012. Pp. 1-6. DOI: https://doi.org/10.1109/TDC.2012.6281528
Noori M. R., Shahrtash S.M. Combinde fault detector and fault phase selector for transmission lines based on adaptive cumulative sum method. IEEE Transaction on power delivery. 2013. Vol. 28. No 3. Pp. 1779-1787. DOI: https://doi.org/10.1109/TPWRD.2013.2261563
Aglar E.U., Tekdemir I.G., Arsoy A.B. Assessment of integral based fault detection methods for power system relaying. 9th International Conference on Electrical and Electronics Engineering. Bursa, Turkey, November 26-28, 2015. Pp. 469-473. DOI:https://doi.org/10.1109/ELECO.2015.7394440
Gilbert D.M., Morrison I.F. A statistical method for the detection of power system faults. Electrical Power and Energy Systems. 1997. Vol. 19. No 4. Pp. 269-275. DOI: https://doi.org/10.1016/S0142-0615(96)00049-X
Noori M.R., Jamali S., Shahrtash S.M. Security assessment for a cumulative sum-based fault detector in transmission lines. 10th International Conference on Environment and Electrical Engineering. Rome, Italy, May 8-11, 2011. Pp. 412-417. DOI: https://doi.org/10.1109/EEEIC.2011.5874792
Raeisi A., Hosseini-Biyouki M.M., Askarian-Abyaneh H., Danyar S. Implementation of a high-speed cumulative determinant-based fault detection algorithm for power system relaying. The 9th Power system protection and control conference. Tehran, Iran, January 14-15, 2015. Pp. 64-77. DOI: https://doi.org/10.1109/PSPC.2015.7094931
Pankiv V., Tankevych Ye. Online saturation detection of high-voltage current transformers of electric substation three-phase primary measuting channels in power systems transients. Tekhnichna Elektrodynamika. 2019. No 2. Pp. 63−71. (Ukr) DOI: https://doi.org/10.15407/techned2019.02.063
IEC 61869-6: 2016 Instrument transformers – Part 6: Additional general requirements for low-power instrument transformers. Geneva, IEC, 2016. 176 p.
IEC 61869-9: 2016 Instrument transformers – Part 9: Digital interface for instrument transformers. Geneva, IEC, 2016. 127 p.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2021 Array