Abstract
A detailed justification of the method of calculating local and effective characteristics of magnetic filters of the matrix structure of high-gradient magnetic separators is given. It is shown that under the assumption of a doubly-periodic structure of the matrix and the plane-parallel character of the field, it allows to significantly expand the possibilities of existing methods due to the absence of significant restrictions on the geometric and physical parameters of the ferromagnetic elements of the matrix and their concentration. The method is based on the integral equation relative to the magnetization vector of the elements of the main parallelogram of periods. The doubly-periodic nature of the solution is automatically provided by the construction of the integral operator kernel, and unlike differential methods, there is no need to set boundary conditions. Within the framework of the linear formulation, clear criteria of similarity are formulated for the effective and local characteristics of the field, in particular for isolines of magnetic forces. The functional possibilities of the method are illustrated by the results of computational experiments on the examples of matrices with different geometric characteristics of the elements. According to the results of computational experiments, the complex and unpredictable distribution of magnetic forces even in matrixes of elements of simple geometry is illustrated. In particular, the calculations confirmed the hypothetical assumption regarding the existence of periodic bifurcation points in which there are no magnetic forces. These points are the centers of zones with negligible magnetic forces, which should be taken into account when calculating the extraction capacity of the matrix. Specific examples illustrate the method of determining the potential zone of extraction of weakly magnetic materials, in which the values of magnetic forces exceed their minimum permissible level, taking into account technological limitations. References 20, figures 5, table 1.
References
Zagirnyak M.V., Branspiz Yu.A., Shvedchikova I.A. Magnetic separators. Problems of designing. Kiev: Tekhnika, 2011. 224 p. (Rus).
Oder R. High gradient magnetic separation theory and applications. IEEE Transactions on Magnetics. 1976. Vol. 12. Issue 5. Pp. 428–435. DOI: https://doi.org/10.1109/TMAG.1976.1059076.
Svoboda J. Magnetic Techniques for the Treatment of Materials. Kluwer Academic Publishers, 2004. 642 p. DOI: https://doi.org/10.1155/1989/18456.
Wei G.M., Ren W.C., Yuan Y.X. Study on magnetic field characteristics and process parameters of tooth-plate type magnetic matrix. Metal Mine, 1985. Pp. 32-37.
Tolmachev S.T., Rozhnenko Zh.G. Comprehensive Solution of Magnetostatics Problem in a System with Ordered Heterogeneous Medium. Vestnik Natsionalnogo tekhnicheskogo universitetta Kharkovskii politekhnicheskii snstitut. 2008. No 40. Pp. 139–145. (Rus).
Tolmachev S.T., Bondarevskii S.L. Mathematical Modeling of High-Intensity Force Field of Magnetic Separators. Visnyk Kryvirizskoho tekhnicnhoho universitetu.Zbirnyk naukovyh prats. 2011. Vyp. 29. Pp. 228–233. (Rus).
Ren L., Zeng S., Zhang Y. Magnetic field characteristics analysis of a single assembled magnetic medium using ANSYS software. International Journal of Mining Science and Technology. 2015. Vol. 25. No 3. Pp. 479–487. DOI: https://doi.org/10.1016/j.ijmst.2015.03.024.
Shvedchykova I., Romanchenko J., Nikitchenko I. Comparative analysis of inhomogeneity degree of magnetic field of polygradient magnetic separators for purification of bulk materials. International Conference on Modern Electrical and Energy Systems (MEES-2017), Kremenchuk, Ukraine, 15–17 November 2017. DOI: https://doi.org/10.1109/mees.2017.824887.
Gerlici J., Shvedchikova I.O., Romanchenko Yu.A., Nikitchenko I.V. Determination of Rational Geometric Parameters of Plate Elements of the Magnetic Matrix of a Polygradient Separator. Elektrotekhnika I elektromekhanika. 2018. No 4. Pp. 58–62. (Ukr) DOI: https://doi.org/10.20998/2074-272X.2018.4.10.
Song C.C., Ning G.H., Yuan Z.Y., Jing L.X., Hui C.C., Yao M.S. Investigation of the influence of different matrix rotation angles on the surrounding magnetic field in a uniform magnetic field. Ming Metall Eng. 2014. No 34. Pp. 290–294.
Ge W., Encinas A., Araujo E., Song Sh. Magnetic matrices used in high gradient magnetic separation (HGMS): A review. Results in Physics. 2017. Vol. 7. Pp. 4278–4286. DOI: https://doi.org/10.1016/j.rinp.2017.10.055.
Hou L. S., Geng L. A kind of high gradient magnetic matrix for high-intensity magnetic separator. Patent CN. 2012.
Zheng X., Wang Y., Lu D. Particle capture of elliptic cross-section matrices for parallel stream high gradient magnetic separation. Compel. 2016. Vol. 35. Pp. 187–199. DOI: https://doi.org/10.1108/COMPEL-03-2015-0140
Zheng X., Wang Y., Lu D., Li X. Study on the application of elliptic cross-section matrices for axial high gradient magnetic separation: key considerations for optimization. Physicochemical Problems of Mineral Processing. 2019. Vol. 55(3). Pp. 655–666. DOI: https://doi.org/10.5277/ppmp18178.
Ding L., Chen L.Z., Zeng J.W. Investigation of combination of variable diameter rod elements in rod matrix on high gradient magnetic separation performance. Advanced Materials Research. 2014. Vol. 1030–1032. Pp. 1193–1196. DOI: https://doi.org/10.4028/www.scientific.net/amr.1030-1032.1193.
Tolmachev S.T., Bondarevsky S.L., Ilchenko A.V. Magnetic Properties of Multicomponent Heterogeneous Media with Bipolar Periodic Structure. Elektrotekhnika I elektromekhanika. 2020. No 1. Pp. 29–38. DOI: https://doi.org/10.20998/2074-272X.2020.1.05. (Rus).
Hurwitz A., Courant R. Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen. J. Springer, 1922. 399 p.
Tolmachev S.T. Special Methods for Solving Magnetostatics Problems. Kiev: Vysshaia shkola, 1983. 166 p. (Rus).
Tolmachev S.T., Bondarevskii S.L. Classification of Heterogeneous Structures and the Condition of Their Bipolar Periodicity. Vostochno-evropeiskii zhurnal peredovyh tekhnologii. 2013. No 5 (65). Pp. 24–29. (Rus).
Emets Yu.P. Electrical Characteristics of Composite Materials with Regular Structure. Kiev: Naukova Dumka, 1986. 191 p. (Rus).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2025 Array