NOVEL SMALL-APERTURE TRANSDUCERS BASED ON MAGNETOSTRICTIVE EFFECT FOR DIAGNOSTIC SYSTEMS
ARTICLE_9_PDF

Keywords

magnetostrictive effect
sensor
ferromagnet
Curie point
magnetic field
magnetic induction
non-destructive testing магнітострикційний ефект
сенсор
феромагнетик
точка Кюрі
магнітне поле
магнітна індукція
неруйнівний контроль

How to Cite

[1]
Bohachev, I., Babak, V. and Zaporozhets, A. 2022. NOVEL SMALL-APERTURE TRANSDUCERS BASED ON MAGNETOSTRICTIVE EFFECT FOR DIAGNOSTIC SYSTEMS . Tekhnichna Elektrodynamika. 3 (May 2022), 069. DOI:https://doi.org/10.15407/techned2022.03.069.

Abstract

Small-aperture transducers based on the magnetostrictive effect for the emission and reception of signals in the ultrasonic range in solid materials have been developed. The article discusses their design features and specifications. Attention is paid to the features of the choice of materials, shapes, and geometrical dimensions of the excitation coil, damper, and magnet. Structural and electrical circuits of the developed transducers are given. Some design and technological solutions have been proposed that can increase the radiation power by 10 times, and resolution by 2-3 times, compared with existing analogs. The area of the radiating part of the sensor is from 0.07 to 0.2 mm2. Such transducers can be used in various diagnostic systems to detect defects in power equipment, aircraft products, industrial equipment, etc. References 22, figures 10, tables 4.

https://doi.org/10.15407/techned2022.03.069
ARTICLE_9_PDF

References

Eremenko V., Zaporozhets A., Isaenko V., Babikova K. Application of wavelet transform for determining diagnostic signs. In: CEUR Workshop Proceedings. 2019. 2387. Pp. 202-214.

Eremenko V.S., Babak V.P., Zaporozhets A.O. Method of reference signals creating in non-destructive testing based on low-speed impact method. Tekhnichna Elektrodynamika 2021. No 4. Pp. 70-82. DOI: https://doi.org/10.15407/techned2021.04.070

Figlus T., Liščák Š., Wilk A., Łazarz B. Condition monitoring of engine timing system by using wavelet packet decomposition of a acoustic signal. Journal of Mechanical Science and Technology. 2014. No 28. Pp. 1663–1671. DOI: https://doi.org/10.1007/s12206-014-0311-3

Babak V., Eremenko V., Zaporozhets A. Research of diagnostic parameters of composite materials using Johnson distribution. International Journal of Computing. 2019. Vol. 18(4). Pp. 483-494. DOI: https://doi.org/10.47839/ijc.18.4.1618

Ravinda H.V., Srinivasa Y.G., Krishnamurthy R. Acoustic emission for tool condition monitoring in metal cutting. Wear. 1997. Vol. 212(1). Pp. 78-84. DOI: https://doi.org/10.1016/S0043-1648(97)00137-3

Zaporozhets A., Eremenko V., Babak V., Isaienko V., Babikova K. Using Hilbert Transform in Diagnostic of Composite Materials by Impedance Method. Periodica Polytechnica Electrical Engineering and Computer Science. 2020. Vol. 64(4). Pp. 334-342. DOI: https://doi.org/10.3311/PPee.15066

Boczar T., Cichon A., Borucki S. Diagnostic expert system of transformer insulation systems using the acoustic emission method. IEEE Transactions on Dielectrics and Electrical Insulation.2014. Vol. 21(2). Pp. 854-865. DOI: https://doi.org/10.1109/TDEI.2013.004126

Majasan J.O. et al. Recent advances in acoustic diagnostics for electrochemical power systems. Journal of Physics: Energy. 2021. Vol. 3(3). 032011. DOI: https://doi.org/10.1088/2515-7655/abfb4a

Glowacz A. Fault diagnosis of single-phase induction motor based on acoustic signals. Mechanical Systems and Signal Processing. 2019. No 117. Pp. 65-80. DOI: https://doi.org/10.1016/j.ymssp.2018.07.044

Rybyanets A.N., Naumenko A.A., Sapozhnikov O.A., Khokhlova V.A. New Methods and Transducer Designs for Ultrasonic Diagnostics and Therapy. Physics Procedia. 2015. No 70. Pp. 1152-1156. DOI: https://doi.org/10.1016/j.phpro.2015.08.247

Babak V., Babak S., Myslovych M., Zaporozhets A., Zvaritch V. Technical provision of diagnostic systems. Springer, Cham: In: Diagnostic Systems For Energy Equipments. Studies in Systems, Decision and Control. 2020. Vol. 281. Pp. 91-133. DOI: https://doi.org/10.1007/978-3-030-44443-3_4

Vinogradov S., Eason T., Lozev M. Evaluation of Magnetostrictive Transducers for Guided Wave Monitoring of Pressurized Pipe at 200 oC. J. Pressure Vessel Technol. 2018. Vol. 140(2). 021603. DOI: https://doi.org/10.1115/1.4038726

Vinogradov S., Cobb A., Fisher J. New Magnetostrictive Transducer Designs for Emerging Application Areas of NDE. Materials. 2018. Vol. 11(5). DOI: https://doi.org/10.3390/ma11050755

Wu J., Tang Z., Wang K., Lv F. Signal Strength Enhancement of Magnetostrictive Patch Transducers for Guided Wave Inspection by Magnetic Circuit Optimization. Applied Sciences. 2019. Vol. 9(7). 1477. DOI: https://doi.org/10.3390/app9071477

Pinter A., Huba A. Study of Pressure-Sensitive Materials for Floor Sensor Networks. Periodica Polytechnica Mechanical Engineering. 2015. Vol. 60(1). Pp. 32-40. DOI: https://doi.org/10.3311/PPme.8434

Mohammadi S., Cheraghi K., Khodayari A. Piezoelectric vibration energy harvesting using strain energy method. Engineering Research Express. 2019. Vol. 1(1). 015033. DOI: https://doi.org/10.1088/2631-8695/ab3f0c

Bogachev I.V., Meleshchenko L.V. Improvement of main parameters of magnetostrictive transducers. Technical Diagnostics and Non-Destructive Testing. 2017. No 4. Pp. 42-45. DOI: https://doi.org/10.15407/tdnk2017.04.06

Weld K., Uras M., Ulsoy G. Applications and Optimization of a Constant Flux Magnetostrictive Impact Sensor. In: ASME 2017 Dynamic Systems and Control Conference. Tysons, Virginia, USA, October 11-13, 2017. DOI: https://doi.org/10.1115/DSCC2017-5322

Calkins F.T., Flatau A.B., Dapino M.J. Overview of Magnetostrictive Sensor Technology. Journal of Intelligent Material Systems and Structures. 2007. Vol. 18(10). 1057-1066. DOI: https://doi.org/10.1177/1045389X06072358

Tavassolizadeh A., Rott K., Meier T., Quandt E., Holscher H., Reiss G., Meyners D. Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors. Sensors. 2016. Vol. 16(11). 1902. DOI: https://doi.org/10.3390/s16111902

Seung H.M., Kim Y.Y. Generation of omni-directional shear-horizontal waves in a ferromagnetic plate by a magnetostrictive patch transducer. NDT & E International. 2016. No 80. Pp. 6-14. DOI: https://doi.org/10.1016/j.ndteint.2016.02.006

Kwum H., Teller C. M. Magnetostrictive generation and detection of longitudinal, torsional, and flexural waves in a steel rod. The Journal of the Acoustical Society of America. 1994. No 96. 1202. DOI: https://doi.org/10.1121/1.411391

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Array

Abstract views: 237 | PDF Downloads: 95

Downloads