ON THE INHOMOGENEITY OF THE MAGNETIZATION OF CYLINDRICAL CORES IN THE UNIFORM MAGNETIC FIELD
ARTICLE_1_PDF (Українська)

Keywords

намагнічування
циліндричне осердя
магнітне поле
інтегральне рівняння
фіктивний магнітний заряд
крива намагнічування magnetization
cylindrical core
magnetic field
integral equation
fictitious magnetic charge
magnetization curve.

How to Cite

[1]
Чуніхін, К. 2019. ON THE INHOMOGENEITY OF THE MAGNETIZATION OF CYLINDRICAL CORES IN THE UNIFORM MAGNETIC FIELD. Tekhnichna Elektrodynamika. 1 (Jan. 2019), 003. DOI:https://doi.org/10.15407/techned2019.01.003.

Abstract

The inhomogeneity of the magnetization of cylindrical cores of an electromagnet in a constant uniform external magnetic field is studied taking into account the nonlinearity of the magnetic properties of the material. The iterative algorithm for calculating resulting magnetic field inside a core, based on the numerical solution of the integral equation for the surface density of fictitious magnetic charges in conjunction with the approximated magnetization curve of a material, is proposed. The convergence of the iterative algorithm for arbitrary initial values of magnetic permeabilities is established. References 9, table 1, figures 3.

https://doi.org/10.15407/techned2019.01.003
ARTICLE_1_PDF (Українська)

References

Grinberg G.A. Selected questions of mathematical theory of electric and magnetic phenomena. Moskva-Leningrad: Izdatelstvo Akademii Nauk SSSR, 1948. 730 p. (Rus)

Kovalenko A.P. Magnetic control systems for space vehicles. Moskva: Mashinostroenie, 1975. 248 p. (Rus)

Mikhailov V.M. Calculation of electric and magnetic fields using integral and integrodifferential equations.Kiev: Uchebno-Metodicheskii Kompleks Vysshego Obrazovaniia, 1988. 60 p. (Rus)

Mikhailov V.M., Chunikhin K.V. On electrostatic analogy of magnetostatic field in inhomogeneous magnetized medium. Electrical engineering & Electromechanics. 2017. No 5. Pp. 38-40. (Rus)

Mikhailov V.M., Chunikhin K.V. Testing of numerical solution of the problem of determining sources of magnetostatic field in magnetized medium. Electrical engineering & Electromechanics. 2017. No 6. Pp. 42-46. (Rus)

Rozenblat M.A. Demagnetization factors for high permeability rods. Zhurnal Tekhnicheskoi Fiziki. 1954. Vol. 24. No 4. Pp. 637-661. (Rus)

Tozoni O.V., Maergoyz I.D. Calculation of three-dimensional electromagnetic fields. Kyiv: Tekhnika, 1974. 352 p. (Rus)

Ianke E., Emde F., Lesh F. Special functions. Moskva: Nauka, 1977. 344 p. (Rus)

Jungerman J.A. Fourth-order uniform electric field form two charged rings. Review of Scientific Instruments. 1984. Vol. 55. No 9. Pp. 1479-1482.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Array

Abstract views: 46 | PDF Downloads: 13

Downloads

Download data is not yet available.