ROBUST DIRECT FIELD ORIENTED CONTROL OF INDUCTION GENERATOR
ARTICLE_2 PDF

Keywords

induction generator
direct field orientation
flux observer
DC-link voltage stabilization
variable speed
energy generation асинхронний генератор
пряме полеорієнтування
спостерігач потокозчеплення
стабілізація напруги ланки постійного струму
змінна швидкість
генерація енергії

How to Cite

[1]
Peresada, S., Bozhko, S., Kovbasa, S. and Nikonenko, Y. 2021. ROBUST DIRECT FIELD ORIENTED CONTROL OF INDUCTION GENERATOR. Tekhnichna Elektrodynamika. 4 (Jun. 2021), 014. DOI:https://doi.org/10.15407/techned2021.04.014.

Abstract

A novel and robust field oriented vector control method for standalone induction generators (IG) is presented. The proposed controller exploits the concept of direct field orientation and provides asymptotic rotor flux modulus and DC-link voltage regulations when a DC-load is constant or slowly varying. Flux subsystem, designed using Lyapunov’s second method, has, in contrast to standard structures, closed loop properties and therefore is robust with respect to rotor resistance variations. A decomposition approach on the base of the two-time scale separation of the voltage and torque current dynamics is used for design of the voltage subsystem. The feedback linearizing voltage controller is designed using a steady state IG power balance equation. The resulting quasi-linear dynamics of the voltage control loop allows use of simple controllers tuning procedure and provides an improved dynamic performance for variable speed and flux operation. Results of a comparative experimental study with standard indirect field oriented control are presented. In contrast to existing solutions, the designed controller provides system performances stabilization when speed and flux are varying. It is experimentally shown that a robust field oriented controller ensures robust flux regulation and robust stabilization of the torque current dynamics leading to improved energy efficiency of the electromechanical conversion process. The proposed controller is suitable for energy generation systems with variable speed operation. References 18, figures 8.

https://doi.org/10.15407/techned2021.04.014
ARTICLE_2 PDF

References

Simoes M. G., Farret F. A. Modeling and analysis with induction generators. USA: CRC Press, 2014. 468 p.

Cardenas R., Pena R., Alepuz S., Asher G. Overview of control systems for the operation of DFIGs in wind energy applications. IEEE Transactions on Industrial Electronics. 2013. Vol. 60. No. 7. Pp. 2776-2798. DOI: https://doi.org/10.1109/TIE.2013.2243372

Carunaiselvane C., Chelliah T. R. Present trends and future prospects of asynchronous machines in renewable energy systems. Renewable and Sustainable Energy Reviews. 2017. Vol. 74. Pp. 1028-1041. DOI: https://doi.org/10.1016/j.rser.2016.11.069

Wu B. Lang Y. Zargari N. Kouro S. Power conversion and control of wind energy systems. Wiley-IEEE Press, 2011. 480 p.

Feehally T., Apsley J. M. The doubly fed induction machine as an aero generator. IEEE Transactions on Industry Applications. 2015. Vol. 51. No. 4. Pp. 3462-3471. DOI: https://doi.org/10.1109/TIA.2015.2413957

Lyra R. O. C., Silva S. R. , Cortizo P. C. Direct and indirect flux control of an isolated induction generator. Proc. International Conference on Power Electronics and Drive Systems (PEDS 95). Singapore, 21-24 February 1995. Vol. 1. Pp. 140-145. DOI: https://doi.org/10.1109/PEDS.1995.404933

Levi E., Liao Y. Rotor flux oriented induction machine as a DC power generator. Proc. 8th European Conference on Power Electronics and Applications. EPE99. Lausanne, Switzerland, 7-9 September 1999. CD-ROM. Pp. 1-8.

Cimuca G., Breban S., Radulescu M. M., Saudemont C., Robyns B. Design and control strategies of an induction-machine-based flywheel energy storage system associated to a variable-speed wind generator. IEEE Transactions on Energy Conversion. 2010. Vol. 25. No. 2. Pp. 526-534. DOI: https://doi.org/10.1109/TEC.2010.2045925

Seyoum D., Rahman M. F., Grantham C. Terminal voltage control of a wind turbine driven isolated induction generator using stator oriented field control. Proc. 18th Annual IEEE Applied Power Electronics Conference and Exposition. APEC03. Miami Beach, FL, USA, 9-13 February 2003. Vol. 2. Pp. 846-852. DOI: https://doi.org/10.1109/APEC.2003.1179315

Leidhold R., Garcia G., Valla M. I. Field-oriented controlled induction generator with loss minimization. IEEE Transactions on Industrial Electronics. 2002. Vol. 49. No. 1. Pp. 147-156. DOI: https://doi.org/10.1109/41.982258

Hazra S., Sensarma P. S. DC bus voltage build up and control in stand-alone wind energy conversion system using direct vector control of SCIM. Proc. 34th Annual Conference of IEEE Industrial Electronics IECON08. Orlando, FL, USA, 10-13 November 2008. Pp. 2143-2148. DOI: https://doi.org/10.1109/IECON.2008.4758288

Meddouri S., Rastegarpour S., Ferrarini L., Idjdarene K. A nonlinear Lyapunov-based control for an autonomous variable-speed wind turbine. Proc. 6th International Conference on Clean Electrical Power ICCEIP17. Santa Margherita Ligure, Italy, 27-29 June 2017. Pp. 430-436. DOI: https://doi.org/10.1109/ICCEP.2017.8004723

Bozhko S., Peresada S., Kovbasa S., Zhelinskyi M. Robust indirect field oriented control of induction generator. Proc. International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference ESARS-ITEC2016. Toulouse, France, 2-4 November 2016. Pp. 1-6. DOI: https://doi.org/10.1109/ESARS-ITEC.2016.7841421

Peresada S., Zhelinskyi M., Kovbasa S., Korol S. Indirect field oriented control of the saturated induction generators with linear PI regulators. Proc. 6th International Conference on Energy Smart Systems ESS2019. Kyiv, Ukraine, 17-19 April 2019. Pp. 138-143. DOI: https://doi.org/10.1109/ESS.2019.8764203

Levi E. Impact of cross-saturation on accuracy of saturated induction machine models. IEEE Transactions on Energy Conversion. 1997. Vol. 12. No. 3. Pp. 211-216. DOI: https://doi.org/10.1109/60.629705

Peresada S., Tonielli A. High-performance robust speed-flux tracking controller for induction motor. Adaptive Con-trol Signal Processing. 2000. Vol. 14. Pp. 177–200. DOI: https://doi.org/10.1002/(SICI)1099-1115(200003/05)14:2/3%3C177::AID-ACS579%3E3.0.CO;2-2

Peresada S., Tilli A., Tonielli A. Theoretical and experimental comparison of indirect field-oriented controllers for induction motors. IEEE Transactions on Power Electronics. 2003. Vol. 18. No. 1. Pp. 151-163. DOI: https://doi.org/10.1109/TPEL.2002.807123

Peresada S., Kovbasa S., Korol S., Zhelinskyi N. Feedback linearizing field-oriented control of induction generator: theory and experiments. Tekhnichna elektrodynamika. 2017. No 2. Pp. 48-56. DOI: https://doi.org/10.15407/techned2017.02.048

Zhelinskyi M. M. Vector control system of induction generator with robustness properties to parametric perturbations: Cand. techn. sci. diss. 05.09.03. National Technical University of Ukraine Igor Sikorsky Kyiv Polytechnic Institute. Kyiv, Ukraine. 2021. 216 p. (Ukr).

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2021 Array

Abstract views: 324 | PDF Downloads: 118

Downloads